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1. Introduction

The present review is designed to encompass the

English language heat transfer papers published in
1998. The papers have been categorized into a number
of sub-®elds. While being exhaustive, some selection is

necessary. Besides reviewing the journal articles of
1998, we also brie¯y mention important conferences
and meetings on heat transfer and related ®elds, major

awards to heat transfer researchers and also books on
heat transfer published during the year.

An ASME meeting on Turbulent Heat Transfer held
in Manchester, England on 31 May±5 June covered
shear ¯ows, separation and reattachment and LES in

industrial applications. The 43rd Gas Turbine and
Aeroengine Congress, User's Symposium and Exhibi-
tion `Turbo Expo±Land, Sea and Air 1998' was held

in Stockholm, Sweden on 2±5 June. Topics covered
included external heat transfer, internal air systems
and seals, ®lm cooling, and internal heat transfer. An

International Symposium on Heat and Mass Transfer
in Biomedical and Medical Engineering was organized
by the International Centre for Heat and Mass Trans-

fer in Kupadasy, Turkey on 8±12 June. Sessions cov-
ered therapeutic processes, mass transfer and
cryobiology. The Joint AIAA/ASME Thermophysics

and Heat Transfer Conference held in Albuquerque,
USA on 15±18 June had sessions on computational
aerothermodynamics, microscale heat transfer, and

heat transfer in porous media. The Fifth International
Conference on Advanced Computational Methods was

held in Cracow, Poland on 17±19 June. Sessions cov-
ered conduction, natural and forced convection,
change of phase, and heat exchangers. The 11th Inter-

national Heat Transfer Conference was held on 23±28
August in Kyongju, Korea. Topics covered included
condensation and direct contact gas/liquid heat trans-

fer, external forced convection, heat transfer augmen-
tation, natural convection, radiation and combustion,
numerical techniques and modeling and two-phase

¯ow with and without phase change. The 8th Inter-
national Symposium on Flow Visualization on 1±4
September in Sorrento, Italy covered combustion,

droplet breakup, multiphase ¯ows, and natural convec-
tion. The 1998 International Mechanical Engineering
Congress and Exposition (IMECE) was held in Ana-

heim, USA on 15±20 November. The Heat Transfer
Division of the ASME held sessions on impingement
and ®lm cooling in turbomachinery, inverse and opti-

mization problems in heat transfer, and jet impinge-
ment heat transfer.

Awards and Honors: The 1998 Heat Transfer Mem-
orial Awards were presented to Dr. Amir Faghri (Art)
and Dr. James V. Beck (Science). The Max Jakob

Award (1997) was presented to Dr. John Howell for
his contributions to the development and application

of theoretical methods for predicting radiative heat

transfer in participating media. The Donald Q Kern

award instituted by the AIChE was presented to Dr.

Ephraim Sparrow for his signi®cant contributions in

translating results of research into useful technological

applications. The Luikov award instituted by the

ICHMT was awarded to Dr. Arthur Bergles for his

pioneering scholarly contributions to heat transfer, in

particular, in the ®eld of enhanced heat transfer.

Some interesting highlights of this year's review are:

Gas turbine engine cooling continues to be the primary

motivation for heat transfer studies on rotating disks

and channels. Work on numerical methods includes

heat conduction (both direct and inverse problems),

melting/freezing, convection and di�usion, and ¯uid

¯ow techniques. Methods are aimed at the treatment

of complex geometry, improved accuracy, and robust-

ness. Papers on heat transfer applications address pre-

diction of temperature ®elds in electronic devices, loss

of coolant accidents in nuclear reactors, building envel-

opes, and issues in manufacturing.

Books on heat transfer published during 1998

include:

Advanced Computational Methods in Heat Trans-

fer V:

A.J. Nowak, M. Zerroukat, R. Bialecki, C.A. Breb-

bia (Editors),

Computational Mechanics Inc.

Advances in Heat and Mass Transfer in Biotechnol-

ogy

S. Clegg (Editor)

ASME Press

Advances in Heat Transfer (Vol. 31)

J.P. Hartnett, T.F. Irvine, Y.I.Cho, G.A. Greene

Academic Press

Analytical methods in Conduction Heat Transfer

Glen E. Myers

AMCHT Publications

Annual Review of Heat Transfer

Begell House

Biotransport: Heat and Mass Transfer in Living

Systems

Kenneth R. Diller (Editor)

Annals of the New York Academy of Sciences

Biological Process Engineering: An Analogical

Approach to Fluid Flow, Heat Transfer and Mass

Transfer Applied to Biological Systems

Arthur T Johnson

Wiley
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Computer Simulations in Compact Heat Exchan-
gers (Developments in Heat Transfer, Volume 1)

Bengt Sunden (Editor), M. Faghri (Editor)

Computational Mechanics Inc.

Computer Technology of Solving Problems in Gas-

dynamics
V.I. Timoshenko, Natalia K. Shveyeva

Begell House

Convection in Porous Media

Donald A. Nield
Springer-Verlag

Fundamentals of Heat and Mass Transfer and

Interactive Heat Transfer

F.P. Incropera, D.P. De Witt
Wiley

Handbook of Heat Transfer

W.M. Rohsenow, J.P. Hartnett, Y.I. Cho

McGraw-Hill

Heat and Mass Transfer

Karl Stephan, H.D. Baehr

Springer-Verlag

Heat and Mass Transfer in Building Services

Design

Keith Moss

Routledge Publishers

Heat Transfer

Anthony F. Mills

Prentice-Hall

Heat Transfer With Applications

Kirk D. Hagen

Prentice-Hall

Heat Transfer: A Practical Approach

Yunus A. Cengel

McGraw-Hill

The Heat Transfer Problem Solver (Problem
Solvers)

James R. Ogden

Sta� of Research and Education Association

Heat and Mass Transfer Australasia 1996: Proceed-
ings of the Sixth Australasian Heat and Mass

Transfer Conference

E. Leonardi, C.V. Madhusudana

Begell House

Heat Transfer Augmentation in Turbulent Flows
A. Pedisius, A. Slanciauskas

Begell House

Heat Transfer Essentials

Latif M. Jiji
Begell House

Heat Transfer Fundamentals for Metal Casting

D.R.R. Poirier, G.H. Geiger (editors)
The Minerals, Metals and Materials Society

Heat Transfer in Electronic Packages
Rao Tummala, Eugene J. Rymaszewski, Alan G.

Klopfenstein
InterThom

Introduction to Convective Heat Transfer Analysis
P.H. Oosthuizen, David Naylor

McGraw-Hill

Modelling of Heat Transfer Phenomena, Vol. 2
B. Sunden, M. Faghri (editors)
Computational Mechanics

An Introduction to Convective Heat Transfer

Analysis
David Naylor, Patrick H. Oosthuizen

McGraw-Hill

Mathematics of Heat Transfer

A.S. Wood
Oxford University Press

Methods for Inverse Heat Conduction
Dinh Nho Hao

Peter Lang Publishing

Operation of Counter¯ow Regenerators
B.S. Baclic, Gordan D. Dragutinovic

Computational Mechanics

Schaum's Outline of Theory and Problems of Heat

Transfer
Donald R. Pitts, Leighton E. Sissom (Contributor)

McGraw-Hill

Schaum's Outline of Heat Transfer

J.P. Holman
McGraw-Hill

Thermal Vibrational Convection
D.V. Lyubimov, G. Z. Gershuni

Wiley
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Transport Phenomena in Materials Processing
D.R. Poirier, G.H. Geiger
The Minerals, Metals and Materials Society

2. Conduction

Numerous subtopics related to heat conduction are

reviewed in this subcategory. These are categorized as:
contact conductance/contact resistance; composites
and/or heterogeneous media; thermal waves and non-

classical e�ects, microscale heat transport, and laser or
pulse heating; heat conduction in ®ns, tubes and solids;
modeling, analytic and numerical techniques; exper-

imental and/or comparative studies; thermomechanical
problems; inverse problems and design studies; ¯ow
e�ects, change of phase and process studies; microelec-
tronic heat transfer; and miscellaneous and special ap-

plications.

2.1. Contact conduction/contact resistance

The thermal contact resistance at the interface of

double tubes assembled by plastic deformation is
described in the study by Bourouga and Bandon [1A].
That involving study of bolted joints is described in
Mantelli and Yovanovich [2A] and contact conduc-

tance of elastomeric gaskets by Mirmira et al. [3A].
The thermal resistance of two solids in contact through
a cylindrical joint and between polished surfaces is

described in Refs. [4A±6A].

2.2. Composite and/or heterogeneous media

The e�ects of thermal insulation behavior of a multi-
layer orthotropic cylinder [7A], an exact solution deri-

vation in composite material and application to inverse
problems [8A], the estimation of transfer matrix of a
thermoelastic acoustic disturbance induced in a layered

medium [9A], the kinetics of thermal instability in the
presence of a nonuniform temperature distribution
composite [10A], the the modeling of damage e�ect on

heat transfer in time-dependent nonhomogeneous
solids [11A], and the heat conduction in multilayer
spherical products by transfer functions [12A] appear

in this subcategory.

2.3. Thermal waves and nonclassical e�ects, microscale

heat transport, and laser or pulse heating

The various subtopics in this subcategory encompass

numerous studies related to heat waves and the re-
spective solutions as described in Refs. [13A, 14A,
17A, 21A, 22A, 24A, 25A, 28A, 29A]; microscale ther-

mal transport as described in Refs. [18A, 19A, 23A,
27A], and laser or pulse heating applications as

described in Refs. [15A, 16A, 20A, 26A, 30A].

2.4. Fins, tubes and arbitrary geometries

The conjugate heat transfer of a plate ®n and tri-
angular ®n in a second grade ¯uid ¯ow [31A, 32A],

conduction heat transfer from con®ned spheres [33A],
and the application of Taylor transformation to opti-
mize rectangular ®ns with variable thermal parameters

and prediction of thermal stresses in isotropic annular
®ns [34A, 35A] appear in the literature.

2.5. Modeling, analytic and numerical techniques

As always, this subcategory almost always receives a

wide variety of activity across a broad range of appli-
cation areas employing closed form derivations, ®nite
element, ®nite di�erence, boundary element techniques

and the like. The contributions range from new devel-
opments in numerical techniques to the application of
existing techniques to new problems and/or studies of

heat transfer in materials and structures [36A±48A].

2.6. Experimental and/or comparative studies

The experimental and theoretical analysis of thermo-
hydrodynamic seizure [49A], an experimental study

and numerical simulation of the injection stretch/blow
molding process [50A], and experimental and analytic
study of periodic heat conduction in a multilayer
medium [51A] appear in this subcategory.

2.7. Thermomechanical problems

The studies involving thermomechanical problems
including coupled heat transfer and thermal stresses in
high t-c thin ®lm superconductor devices [52A], ther-

mal optimization in transient thermoelasticity using re-
sponse surface approximations [53A], and the e�ects of
thermal gradient and residual strsses in thermal barrier

coating fracture [54A].

2.8. Inverse problems and design studies

Various inverse problems encompassing heat con-
duction, prediction of heat ¯ux of an m42 percussion

primer, solution of an inverse problem subjected to
speci®cation of energies, inverse determination of
steady heat convection coe�cient distributions, a new

space marching method, and the solution of tempera-
ture and thermal stress ®elds appear in Refs. [55A±
60A].
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2.9. Flow e�ects

The study of chaotic heat transfer in a periodic two-
dimensional ¯ow is described in [61A] and the classi®-
cation of one- dimensional steady state two-phase

geothermal ¯ows including permeability variations is
described in [62A].

2.10. Microelectronic heat transfer

The modeling of rare®ed gas heat conduction
between wafer and susceptor [63A] and a tool for a

compact dynamic thermal model generation [64A]
appear in the literature.

2.11. Miscellaneous studies and special applications

A wide variety of applications and studies involving

conduction heat transfer with particular emphasis on
specialized applications appears in Refs. [65A±78A].

3. Boundary layers and external ¯ows

Papers on boundary layers and external ¯ows for
1998 have been categorized as follows: ¯ows in¯uenced
externally, ¯ows with special geometric e�ects, com-

pressible and high-speed ¯ows, analysis and modeling
techniques, unsteady ¯ow e�ects, ¯ows with ®lm and
interfacial e�ects, ¯ows with special ¯uid types and

property e�ects, and ¯ows with reactions.

3.1. External e�ects

Papers which focus on external e�ects document the
in¯uence of streamwise thermal gradient e�ects [2B,
5B, 9B, 13B], buoyancy e�ects [1B, 14B], ¯ows in¯u-

enced by embedded vortices [10B, 11B], ¯ows modi®ed
by variable density e�ects [3B, 4B, 8B, 15B], and ¯ows
in¯uenced by electric and magnetic ®elds [6B, 12B].

The e�ects of thermal gradients included one in which
a revised Blasius solution was developed [13B] and two
applied to a stretching surface [5B, 9B]. One of the

buoyancy- in¯uenced ¯ows showed how suction modi-
®ed the mixed-convection heat transfer coe�cient [1B]
while another showed the e�ect of orientation of a
Rankine vortex embedded in the boundary layer [11B]

and a third noted a three-fold increase in heat transfer
for a situation where a vortex tube interacted with a
sphere [10B]. Acoustic enhancement was applied to

incineration [15B] while rapid compression in a piston±
cylinder arrangement was addressed in [8B, 3B]. The
in¯uence of an electric ®eld on suspended drops was

discussed in [6B], showing how the drops were
deformed, while in [12B], convective roll cells, as in¯u-
enced by a magnetic ®elds were analyzed to develop

stability curves. The stability of boundary layer ¯ows
as in¯uenced by centripetal forces due to curvature

was experimentally documented while the pressure
gradients, which usually accompany curvature in duct
¯ows, were removed [7B].

3.2. Geometric e�ects

One paper in this category dealt with a slip-stick
boundary condition on a sphere [48B], another with

non-stokes ¯ow over particles in turbulent ¯ow [47B],
a third on a particle of irregular shape [28B], and a
fourth on the heat and mass transfer from a droplet
[43B]. A mathematical model was presented for the

analysis of a granulating column [37B].
Several papers dealt with cylinders. In one, mixed-

convection heat transfer was evaluated for slender

cylinders [22B] and in two [34B, 17B] numerical sol-
utions were presented for ¯ow over cylinders in cross-
¯ow; on one, both compressible and incompressible

¯ows were modeled [34B] whereas in another [17B] the
e�ects of angle of inclination of an elliptical tube were
investigated. Finally, a model was developed for the
turbulent heat ¯ux in the wake of a cylinder [52B].

On stagnation ¯ow, one paper showed equations de-
rived to estimate stagnation region heat transfer [36B],
another modi®ed the unsteadiness at the edge of the

near-wall viscous region to account for the free-stream
turbulence, level and scale [53B], a third computed
heat transfer under an impinging jet [19B], a fourth

discussed heat transfer under an array of orthogonal
jets [32B], and a ®fth quanti®ed augmentation via
impingement on a rough surface [25B].

Papers which focused on roughness included two on
the e�ects of non-homogeneous roughness [39B, 45B],
another considering a liquid ®lm surface roughness
[49B], and a fourth presenting the e�ect on turbulence

spectra when the roughness is grass [35B]. Finally, a
paper was presented which discusses the e�ects of iso-
lated roughness regions on transition over the Shuttle

Orbiter surface [20B].
Ribbed surfaces were discussed in [51B, 26B, 33B,

38B]. In [51B], a transient measurement technique was

presented; in [33B], ribs were applied to narrow chan-
nels; and in [38B], perforated ribs were compared to
solid ribs. Winglets were applied to enhance heat trans-
fer in [29B] and the general topic of enhancement was

addressed in [31B].
Several papers considered representations of compu-

ter elements on boards [24B, 41B, 46B]. In one [24B],

heated cubes were placed downstream of a roughness
element and in another [46B], direct liquid cooling was
applied to ¯ush-mounted and protruding elements.

A rather large number of papers were dedicated to
turbine ¯ows [16B, 21B, 18B, 30B, 23B, 27B, 44B]. In
one, roughness e�ects were quanti®ed, some cases were
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with the surface coated with grit, some were with
tumbled grit, and some were polished [16B]. In a sec-

ond, the combined e�ects of roughness and elevated
free stream turbulence intensity were discussed [21B].
In a third, a model was presented for capturing the

e�ect of roughness [30B]. In one paper, transition was
addressed, where cases of various freestream turbu-
lence intensity were presented along with a model for

capturing the high turbulence e�ect [18B]. The e�ect of
isentropic work extraction in the unsteady ¯ow down-
stream of a turbine was measured [23B]. Simultaneous

temperature and velocity measurements were presented
for a radial-in¯ow turbine [27B] and the ¯ow in face
seals was documented in [44B].
Several entries in this category were on a large scale.

Paper [40B] discussed the e�ects of boundary layer
thinning in o�-shore ¯ow, with the e�ects of its associ-
ated change in roughness, whereas [42B] discussed heat

losses, mantle overturn, and gas evolution in the
earth's mantle.
Finally, for this category, a paper was presented on

the e�ects on pressure drop and heat transfer coe�-
cient of non-uniform plate length in a heat exchanger
[50B].

3.3. Compressibility and high-speed ¯ow e�ects

In this category, there was a review of analytical sol-
utions for compressible unsteady boundary layers
[55B] and a solution for compressible ¯ow past a cylin-
der [57B]. Under hypersonic ¯ow, one paper examined

turbulence models and made a proposal for use in heat
transfer predictions [59B], another used a generalized
reference enthalpy formulation to identify a similitude

error which is stated to be important in transition
zones [62B], a third showed the e�ects of angle of
attack for a blunt- nosed, ramped, ¯at plate [58B], the

fourth applied a stability term which is signi®cant at
high Knudsen numbers [63B], and the ®fth discussed
non-equilibrium e�ects in molecular nitrogen [54B].

High-speed ¯ow of liquid monopropellant from a noz-
zle was addressed, with focus on evaluation of numeri-
cal schemes [61B] and compressible, low-speed ¯ow in
an electrical furnace was discussed, including the

e�ects of back di�usion [56B]. Finally, experimental
data taken for ¯ow characterization of a wind tunnel
for high speed ¯ight testing were used to propose a

thermochemical model which involves vibration±dis-
sociation±recombination coupling [60B].

3.4. Analysis and modeling

The modeling of vorticity at the wall and the in¯u-

ence of the no-slip boundary condition for ¯ow past a
2D cylinder were presented in [89B]. The e�ect of heat
transfer from the wall on the stability of ¯ames in bur-

ners was addressed in [92B]. Thermophoresis e�ects on

boundary layer ¯ows were analyzed by including the
e�ect of particle deposition on the wall [71B]. The
method of characteristics was applied to an underex-

panded free jet ¯ow with vibrational non-equilibrium
for application to shock tubes [87B]. The quest for
invariant descriptors in heat transfer was the topic of

[86B]. Techniques from the literature were reviewed.
The e�ect of heat transfer on transition of ¯ow past a

cylinder was quanti®ed in terms of an e�ective Rey-
nolds number [73B].
Several papers dealt with integral techniques [72B,

78B, 74B]. One [72B] is an analysis of laminar, mixed
convection between vertical parallel plates, another is

for uniformly-heated ducts [78B], and a third [74B]
used the Chilton±Colburn analogy to compute ¯ow
with longitudinal pressure gradients.

Two papers dealt with conjugate heat transfer; one
[94B], for ¯ow past a ¯at plate while the other [93B]
was to model two-row, ®nned tubes.

Several papers addressed atmospheric boundary
layers. In two [64B, 65B], mass transfer from soil to

the atmosphere was considered using data of land-sur-
face ¯uxes; in a third, heat and mass transfer from a
cooled surface were addressed [66B]; and, in a two-

part paper [67B, 75B], the e�ects of strong concen-
tration gradients on viscosity were quanti®ed.

A series of papers was presented on boundary layer
transition. One speci®cally addressed laminar-to-turbu-
lent transition in gas turbine ¯ows [70B], another [68B]

presented data which shows the discrete levels of tur-
bulence intensity in a boundary layer ¯ow undergoing
transition to turbulence, and a third [88B] addressed

transition from turbulent natural to turbulent forced
convection.

Several papers in this category focused on coherent
structures. In one [98B], the e�ects of coherent struc-
tures on the wall region were discussed, another [97B]

addressed the modeling of coherent structures for heat
and mass transfer computation, a third discussed the

modeling of temperature streaks using a statistical
model [84B], a fourth addressed the coherency between
heat ¯ux and temperature ¯uctuations in 3D boundary

layers [83B], and the last observed thermal signatures
of free-surface waves to describe a surface renewal
mechanism and its e�ects on heat ¯ux [96B].

Turbulence modeling remains popular. New steps
this year addressed the modeling of wallward ¯ow in

the viscous sublayer [69B], used an improved Louis
scheme to allow di�erent roughness lengths for the
momentum and heat transfer in atmospheric boundary

layers [81B], modeled di�usivity in grid-generated tur-
bulence [82B], modi®ed a mixing length model for
strong heating e�ects [85B], changed a near-wall model

to increase computational speed in ¯ows with buoy-
ancy e�ects [95B], captured vortex±wall interactions
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for computing unsteady heat ¯ux rates from the wall
[90B], used Lagrangian stochastic models for appli-

cation to strati®ed ¯ows [77B], improved low-Rey-
nolds-number, k±epsilon models for computation of
near-wall heat transfer coe�cients [79B], and, com-

pared the performance of an RNG model against
DNS computations for wall shear ¯ows [80B].
Two papers focused on DNS. The ®rst addressed

particle ¯ows in isotropic turbulence using a pseudo-
spectral method [91B] and the other applied DNS to a
turbulent boundary layer solution [76B].

3.5. Unsteady e�ects

Flows in this category included one on unsteady,
conjugate heat transfer for a particle over a range of
Peclet number from 0 to 10 [99B], and another on heat

transfer from a cylinder in a low-turbulence freestream
[102B]. One paper addressed pulsatile ¯ow past a cylin-
der, for application to Stirling engine regenerators

[100B], while another studied an impulsively-started
¯at plate in which the e�ects of mass di�usion on the
velocity pro®le were quanti®ed [101B].

3.6. Films and interfacial e�ects

Papers with strong emphasis on interfacial e�ects
included three on droplets [109B, 104B, 103B]. In the

®rst, droplet evaporation in a turbulent ¯ow was com-
puted [109B], another was concerned with sea sprays
[104B], while the third focused on droplet formation
[103B].

In [108B], gas bubble nucleation during rapid
decompression was analyzed. Heat and mass transfer
in wall ®lms were studied [110B] with application to

fuel separation. A need for modeling improvements
was noted. Models for gas±liquid interface heat trans-
fer were tested and recommended in [107B].

Two papers discussed Marangoni e�ects on heat and
mass transfer. In one, critical Reynolds numbers were
found, with their corresponding wave numbers [106B].

In the second, a dimensionless number for thermoca-
pillary-driven ¯ow was introduced [105B].

3.7. E�ects of ¯uid type or ¯uid properties

Several papers in this category considered the beha-

vior of viscoelastic and power-law ¯uids. An analytical
solution was presented for laminar ¯ows [123B]. Flows
over stretching sheets were analyzed in [112B, 114B,

115B, 119B±121B]. In [114B] the e�ect of suction was
analyzed and in [112B], reversal of heat ¯ow with pos-
ition from the leading edge was shown.

Temperature-dependent viscosity was included in a
numerical solution of a combined free- and forced-con-
vection ¯ow [117B]. An exact solution for heat transfer

with a low-Prandtl-number ¯uid ¯owing over plates
and cylinders [118B] was presented and the e�ects of

approaching the thermodynamic critical state on ther-
mal resistance was shown [122B].
Heat transfer to a ferro¯uid in the presence of a

magnetic ®eld was numerically computed [111B]; in
doing so, it was found that the e�ect of the magnetic
®eld was to reduce heat transfer.

Two papers were given in which the nature of a par-
ticle-laden ¯ow was stressed. In one [116B], the study
was on the e�ect of homogeneous turbulence whereas

the second showed the importance of Brownian
motion [113B].

3.8. Flows with reactions

Several papers were with emphasis on combustion.

In one [126B], kinetic theory was applied to plane jet
¯ows, and the e�ects of turbulent transport were
included. In another [125B] temperature dissipation in

jet ¯ames was analyzed looking at the interaction
between chemistry and turbulence. Another paper pre-
sented the interaction of two jets askew to one another
in a furnace to note that substantial cooling was

e�ected by heat exchange with the furnace [128B]. The
combustion of coal in a shock tube was experimentally
investigated where it was noted that there was very lit-

tle heat transfer to particles in the homogeneous com-
bustion zone [127B]. Burning on a vertical surface with
cross-¯ow was analyzed, looking at various fuel types

and various Reynolds numbers [124B]. The spread of a
¯ame on a thermally-thick surface was studied where
various models were considered and the e�ects of sev-
eral parameters were shown [130B]. Finally, low-NOx

regenerative burners were numerically considered for
use in a slab reheat furnace [129B]. They were shown
to perform favorably.

4. Channel ¯ows

4.1. Straight-walled ducts

The geometrical simplicity of straight-walled ducts
has proven itself to be a reliable test con®guration
for numerical simulation/validation and for the con-
sideration of boundary and initial conditions through

experimental inquiry. A critical review appeared in
the literature [12C] concerning the heat transfer
characteristics of supercritical CO2 in tube ¯ow.

Direct numerical simulations of turbulent channel
¯ows were conducted with linear spanwise mean tem-
perature gradients [8C] and with low to medium-high

Prandtl number ¯uids [6C]. Turbulent channel ¯ows
were also modeled using k±e techniques. A rectangular
duct having an aspect ratio of 8:1 was examined using
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a combined numerical and experimental approach
[14C]; various low Reynolds number models were com-

pared in turbulent pipe ¯ow [5C]; thermal transport
mechanisms in turbulent gas ¯ows were also studied
using k±e modeling for viscosity and kinetic energy

[19C]. The transition from very low to high Reynolds
numbers in the developing zone of a channel was
examined using a control-volume-based ®nite element

method [3C]. A ®nite element code was used for the
analysis of mixed-convection in a horizontal channel
heated from the side walls [17C]. A closed form ex-

pression for the fully developed velocity, temperature
and concentration pro®les in a vertical channel were
found in the limit of in®nite aspect ratio [9C]. An ana-
lytical solution for skin friction and heat transfer was

undertaken for compressible ¯ow by an extension of
the law-of-the-wall to account for compressibility [4C].
A weakly nonlinear theory was used to investigate

fully developed Poiseuille ¯ow subject to constant heat
¯ux [20C]. Heat transfer in vertical channels of a gas-
discharge apparatus, experiencing mixed-convection,

was approximated using integral relations [15C]. The
three-dimensional temperature ®eld in the thermal
entrance region of a rectangular duct was solved

analytically [18C]. Variable property e�ects were
accounted for in one study of forced turbulent con-
vection to water in a pipe [1C]. The entrance region
of thin vertical tubes was studied to determine the

e�ect of axial di�usion on laminar heat transfer
[10C]; thick walled tubes with isothermal outer sur-
faces were examined when subjected to high-pressure

¯ows of gas and liquid [2C]. A mathematical model
was used to predict the wicking height in a capillary
as a�ected by heat transfer in the thin ®lm region

[7C]. The viscous layer in a strongly-heated gas ¯ow
was measured to guide the development of advanced
turbulence models [16C]. A parallel-plate electroche-
mical ¯ow cell was studied, having opposing and aid-

ing ¯ow; relationships between heat and mass transfer
rates were considered [11C]. The heat transfer
enhancement in the entrance region of a vertical

channel was also investigated [13C].

4.2. Microchannel ¯ow

While microchannel heat transfer studies are still

relatively sparse in the literature, this trend will
undoubtedly change in the near future. The use of the
Brinkman number for correlating convective heat

transfer in microchannels was reexamined [25C]; a
dimensionless geometric parameter was also proposed.
An experimental study of single-phase forced convec-

tion of water in circular microchannels led to the
development of generalized correlations for the Nusselt
number [21C]. The use of a transmission window

employing microchannel cooling indicates the dramatic
impact that microchannel heat transfer can have on

beam ¯ux [26C]. The ¯ow of gas in a microchannel
was studied using nitrogen and helium as working
¯uids; the slip ¯ow regime was examined [22C]. The

e�ects of aspect ratio and Knudsen number on micro-
scale ¯ow in rectangular channels was addressed in the
slip ¯ow regime [24C]. Compressibility and heat trans-

fer e�ects were considered in the ¯ow of gas in a
microtube [23C].

4.3. Irregular geometries

Several straight-walled ducts with triangular, semi-
circular, trapezoidal, concentric annular and grooved
walls were examined in the literature. The e�ect of

surface roughness on forced convective heat transfer
in a triangular duct was studied experimentally; non-
dimensional expressions for heat transfer were devel-

oped [34C]. Surface roughness was also examined in
triangular ducts together with the impact of duct wall
angle [36C]. The fully-developed laminar ¯ow in a
semi-circular duct was investigated to evaluate the

e�ects of temperature-dependent viscosity [33C]. A
three-dimensional numerical simulation of a trapezoi-
dal cross-sectioned duct with wavy walls was underta-

ken, using a ®nite volume technique with a
nonstaggered grid [38C]. The logarithmic wall laws of
mean axial velocity and temperature were obtained

for the heated inner wall of a vertical concentric
annular channel [39C]. Laminar ¯ow was studied in
the entrance region of a eccentric annuli using a

®nite-di�erence algorithm [30C]. A direct numerical
simulation demonstrating heat transfer augmentation
in a transversely grooved channel was undertaken in
the Reynolds number range of 140±2000 [31C]. Chan-

nel ¯ows experiencing wavy walls were studied by a
number of investigators. A linear stability analysis of
the two-dimensional ¯ow in a wavy-walled channel

was conducted; both symmetric and sinuous channel
con®gurations were considered [29C]. A study of Toll-
mien Schlichting waves in a wavy channel was done;

instability was found to set in at a Reynolds number
of approximately 90 [27C]. A combined numerical
simulation and ¯ow visualization study of a sinusoi-
dal wavy wall was done for very viscous liquids

[37C]. The turbulent ¯ow and heat transfer in a
periodically converging±diverging channel was simu-
lated using a two-equation k±e model [32C]. The heat

transfer characteristics from ethylene glycol and water
solutions was examined in spirally indented tubes;
Prandtl number e�ects were discussed [35C]. Non-uni-

form blowing and suction were studied numerically in
the porous wall of a circular tube with constant heat
¯ux [28C].
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4.4. Finned and pro®led ducts

The inevitable tradeo�s between heat transfer aug-

mentation and pressure drop make duct pro®ling a
rich design problem. The broad class of so-called
ribbed ducts, was considered in a large number of

studies. Experiments were performed to examine the
water cooling of protruding heated elements mounted

in a rectangular channel [45C]. Heat transfer enhance-
ment was studied in compact heat exchangers using
holographic interferometry [50C]; holographic inter-

ferometry was also used to investigate rectangular per-
forated ribs [52C] and solid ribs [54C] of di�erent
heights in a rectangular passage. The e�ect of rib open

area was also studied in a rectangular duct [53C]. Rib
turbulators were used with bleed holes to achieve heat
transfer enhancement in a two-pass square channel

[44C]. The two-dimensional forced convective heat
transfer between plates with ¯ush mounted heat
sources, used to simulate electronic cooling, was stu-

died numerically [63C]. Steamwise periodic rods were
used to augment heat transfer in laminar ¯ow between
parallel plates [64C]. Slit and solid ribs mounted on a

single wall of a rectangular duct were studied exper-
imentally; a combined ¯ow visualization and quantitat-

ive study was conducted [48C]. A series of studies was
undertaken in one group to measure the heat transfer
characteristics in ducts: low-aspect-ratio ribs were

examined in one study [58C]; staggered 45-degree rib
geometries were tested in a square channel [59C];
measurements of heat transfer and friction factors

were made in square and trapezoidal ducts with ribs
on all walls [60C]. The e�ect of periodic ribs was inves-
tigated in a straight cooling channel [56C]. Heat trans-

fer measurements were made in a rib-roughened
passage; comparisons were made between rounded and
sharp cornered ribs [51C]. Internally ribbed turbine

blade passages were studied and the in¯uence of
cylindrical vortex generators was considered [46C]. Sec-

ondary ¯ow patterns, pressure drop and heat transfer
were investigated in a rib-roughened rectangular chan-
nel [55C]. An open channel ¯ow was studied with pro-

truding heaters on one side [42C]. A horizonal printed-
circuit board with lifted electronic components was
studied; the role of vertical protrusion on heat transfer

was considered [49C]. The heat transfer enhancement
caused by an array of cubic ®ns was examined in a
narrow channel [41C]. Three-dimensional calculations

were performed for thermally and hydrodynamically
developed laminar ¯ow in a ®nned oval tube [40C].
One paper investigated the unsteady ¯ow and heat

transfer from rectangular sources with and without an
included plate in the channel [62C]; a related paper
considered the impact of vortex shedding on the heat

transfer performance [61C]. A combined analytical and
numerical study of the heat transfer in a three-dimen-

sional corrugated channel was undertaken in the Rey-
nolds number range up to 250 [57C]. The e�ects of

ba�e size, perforation, and orientation were con-
sidered on the heat transfer in a rectangular channel
[43C]. An experimental study was done to study the

developing turbulent mixed convection in a horizontal
tube with strip-type heaters [47C].

4.5. Channel ¯ows with periodic motion and secondary

¯ow

A theoretical analysis was undertaken of the
periodic laminar ¯ow and heat transfer in a tube, as

would be found, for instance, in Stirling engines [75C].
The unsteady conjugate heat transfer was studied for
¯ow in a circular tube with periodically varying inlet

temperature [80C]. Sinusoidally varying inlet tempera-
ture was examined theoretically in a parallel-plate
channel [69C]. Pulsating channel ¯ows were investi-

gated for channels with grooved walls [78C] and with
isolated heated electronic components [74C]. The tran-
sient thermal response of ¯ow to various pressure
pulses was studied using the semi-direct variation

method of Kantorovich [71C]. The unsteady motion
and heat transfer in Stirling and pulse-type refriger-
ators was studied [67C]. The ¯uid-thermal character-

istics of the ¯ow at the intake manifold of a spark-
ignition engine was examined [66C]. The pulsatile ¯ow
through a smooth constriction with area reductions of

25%, 50% and 75% was investigated, experiments
were conducted over the physiologically relevant mean
Reynolds number of 600 [65C]. Thermoacoustic

streaming was examined in a plane parallel resonant
channel; it was shown that the conjugate wall±¯uid
coupling is crucial in yielding the large time-averaged
axial temperature gradients that can be induced in the

channel [70C]. The buoyancy-induced secondary
motion in the entrance region of a horizontal straight
tube was studied; air and water ¯ows were considered

[79C]. Combined ¯ow visualization and temperature
measurements were made to investigate the e�ect of
aspect ratio on the characteristics of longitudinal vor-

tex ¯ow at the bottom of a horizontal rectangular duct
[68C]. Secondary motion established by the imbalance
between centripetal acceleration and pressure gradient
was considered in a number of studies. The transitional

¯ow and heat transfer occurring at high Dean number
were studied [77C]. A numerical study considered the
three-dimensional turbulent ¯ow and heat transfer in

the entrance region of a curved pipe [76C]. Mild curva-
ture was studied at Dean numbers from 300 to 750; a
variety of laminar-to-turbulent transition ¯ow behavior

was observed [73C]. The transient behavior in a heli-
cally coiled pipe with pulsatile fully developed turbu-
lent ¯ow was examined experimentally [72C].

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366264



4.6. Multiphase channel ¯ow

The turbulent heat transfer characteristics of ultra-
®ne metallic oxide particles suspended in water was
investigated experimentally [86C]. The deposition of

small particles due to thermophoretic e�ects was
studied using the direct numerical simulation of turbu-
lent channel ¯ow [89C]. Infrared thermography of an

electrically heated tube was used to investigate the heat
transfer in intermittent air±water ¯ows; both horizon-
tal [81C] and upward inclined tubes were considered

[82C]. The role of surfactant additives in reducing drag
and heat transfer were studied [87C, 88C]. The ¯ow of
¯uids near their critical point was studied in the
entrance region of a vertical tube [85C]. Buoyancy

e�ects on the enhancement of heat transfer using an
electrohydrodynamic technique was investigated nu-
merically [84C]. Analytical and numerical tools were

used to study the hydromagnetic slip ¯ow in an
inclined channel; boundary conditions for velocity and
temperature were addressed [83C].

4.7. Non-Newtonian ¯ow

The non-Newtonian ¯ow in a rectangular duct with
constant temperature walls was studied; three-dimen-
sional mixed convection was considered [91C]. The

¯ows of inelastic, shear-thinning and shear-thickening
¯uids were studied in shallow channels [95C]. Exper-
iments were carried out in a Sulzer SMX static mixer
for the heat transfer of Newtonian and non-Newtonian

¯uids [94C]. The heat transfer and pressure drop in
heat exchanger passages were considered for non-New-
tonian ¯uids [93C]. Research was done to evaluate the

e�ect of ¯uid motion on the conductivity of non-New-
tonian ¯uid, as well as the e�ect of shear-rate-depen-
dence on heat transfer [92C]. A numerical study was

performed to evaluate the following e�ects: the tem-
perature dependence of viscosity; shear thinning prop-
erties; and buoyancy-induced secondary ¯ow [90C].

4.8. Miscellaneous channel ¯ow

A handful of papers did not ®t well into the primary
categories for channel ¯ows. A fully-developed packed-
bed ¯ow was simulated numerically; a two-dimensional
model incorporated the e�ects of Raschig ring packing

on the Ergun equation [104C]. Drop tower experimen-
tal results were presented of the ¯ow characteristics of
gas±liquid two-phase annular ¯ow under microgravity

[99C]. Mass transfer coe�cients were measured to
deduce heat transfer rates from particles suspended in
a vertical holding tube [98C]. An analytical model was

developed to examine aspects of rate-controlled seizure
in an unloaded journal bearing [103C]. The thermal
performance of three di�erent regenerator matrices

was considered; general formulae for the heat transfer
rates as a function of ¯ow channeling were developed

[96C]. The hydrodynamics and heat transfer under
conditions of ¯ow of conducting liquid in a ¯at chan-
nel in a transverse magnetic ®eld were studied [101C].

An investigation was carried out to evaluate the opti-
mal number of tubes in a dry-expansion evaporator;
focus was on changes occurring when R22 is replaced

with R407C [100C]. Measurements were made of the
heat transfer in a severely outgassed tube bank [97C].
The heat transfer for rectangular solar air heater ducts

packed with wire mess screens was studied [105C]. An
analytical study of the heat and mass transfer through
a parallel-plate channel with recycle was presented
[102C].

5. Separated ¯ows

Flow past blu� objects and obstructions leads to

¯ow separation and often reattachment. Heat transfer
measurements were made downstream of a surface
mounted two-dimensional rib; complementary compu-
tational results were also reported [1D]. One report

used the three-dimensional incompressible Boussinesq
equations in primative variable form to examine the
¯ow past a heated and cooled sphere [13D]. A sum-

mary of numerical studies of laminar ¯ow past heated
circular cylinders was provided [12D]. Buoyancy ¯ow
past a circular cylinder was studied; the ¯ow ®eld and

temperature distribution was predicted using a novel
®nite volume algorithm [18D]. The ¯ow and heat
transfer over a three-dimensional spherical object pos-

itioned in a pipe was presented [17D]. An analytical
solution was obtained for the forced convective heat
transfer from a circular cylinder at low Reynolds num-
bers [11D]. The oscillatory ¯ow and heat transfer in a

channel with tandem transverse vortex generators was
examined numerically [20D]. A combined experimental
and numerical study was conducted to study the ¯ow

pattern and heat transfer through a tube bank [14D].
Pulsatile ¯ow past two heated blocks positioned in a
channel were investigated numerically [9D]. Exper-

iments were also conducted on the forced convective
heat transfer over tandem blocks in a channel [4D].
Single and multiple heated objects in a channel were
studied [23D, 24D]. The generalized integral transform

technique was used to study the thermal boundary
layer equations for ¯ow past two-dimensional and axi-
symmetric bodies [2D]. A numerical study was used to

investigate the heat transfer from two-dimensional,
steady, laminar ¯ow in a channel with two ribs [3D].
A control-volume-based ®nite-di�erence method was

used to study the turbulent ¯ow downstream of a
backward facing step with jet discharge perpendicular
to the main ¯ow [22D]. A new scaling procedure is
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used to study the velocity and temperature turbulent
boundary layer during separation [5D]. The important

interaction between buoyancy and inertia forces was
studied in a combined numerical and experimental
study of the ¯ow past a backward facing step [10D].

Swirling ¯ow experiencing pipe divergence is studied
experimentally; a divergence angle of 7 degrees was
considered [6D]. The viscous shock layer was examined

using a numerical simulation of two-dimensional none-
quilibrium supersonic ¯ow past axisymmetric blunt
bodies with catalytic surfaces [8D]. An asymptotic non-

adiabatic triple-deck model was used to study the
supersonic and hypersonic shock laminar boundary
layer interaction [7D]. Experiments were performed to
investigate the shock-wave turbulent-boundary-layer

interaction caused by a blunt swept ®n-plate con®gur-
ation [19D]; experiments were also conducted to study
the shock boundary layer interaction using oil ¯ow

visualization and simultaneous measurements of ¯uctu-
ating wall pressure [21D]. The thermal time constant
in a ®ber-®lled loudspeaker was studied [15D]. The

convective heat transfer associated with the streamwise
development of counterswirling co¯owing jets con®ned
within a tube was studied [16D].

6. Porous media

The literature on heat and mass transfer in porous

media continues to expand. Along with the traditional
applications to packed and ¯uidized beds and insula-
tion systems, an increase of activity on volume aver-

aging techniques, property determinations, and
dispersed phase has occurred. A number of studies
have focused on various aspects of transport within
porous surfaces, and we present a special section

below on this topic.
A goodly number of very fundamental studies this

past year have addressed issues of overarching applica-

bility to all of the categories of this review. The
equations and requisite thermal boundary conditions
for radiative transfer in translucent porous media has

been extensively reviewed by Siegel [17DP, 18DP]. The
complex process of non-isothermal/isothermal liquid
composite molding has been described via macroscopic
constitutive relations derived from a microscopic

analysis of the representative elementary volume
[11DP].
Witaker and co-workers have developed the con-

straints associated with solute transport in a chemically
and mechanically heterogeneous medium and thereby
have determined when a large scale average velocity, a

single absorption isotherm and a large-scale dispersion
tensor apply [15DP]. A related study uses the Witaker
volume averaging technique to develop models for dif-

fusion and reaction in bio-®lms [20DP]. The heat

transfer boundary condition at the interface between a
porous medium and homogenous ¯uid was conceptual-
ized as a ¯ux jump condition also based on volume

averaging techniques [12DP], and the general equations
for non-Newtonian ¯ows in porous media were rigor-
ously developed within the framework of volume aver-

aging [3DP].
The description of heat transfer in dispersed porous

media has been reformulated in terms of a new
dimensionless parameter that takes into account the
disperse phase aerodynamic resistance [9DP]. A more

specialized study considers the description of friction
and heat transfer via power law relationships for

laminar cross ¯ow in sparse periodic cylinder arrays
[6DP].
Multiphase ¯ows with heat transfer have been

investigated from several perspectives. A classi®cation
has been developed for one-dimensional steady
geothermal ¯ows with permeability variations related

to saturation [21DP]. A set of nonlinear governing
equations has also been developed for coupled heat,

moisture and air transfer in deformable unsaturated
media including heat of wetting, heat sink e�ects
owing to thermal expansion, phase change, and com-

pressibility [22DP]. Basic studies of capillary porous
media have reported a derivation of the governing
equations that include the physical characteristics of

the medium [16DP] and a model for heat transfer in
capillary pumped grooves [14DP]. The stability of

vapor±liquid counter ¯ow was shown to be stable
with respect to small disturbances in the saturation
®eld and the pressure ®eld was shown to be asympto-

tically stable for all choices of thermal boundary con-
ditions [13DP]. For coupled heat and mass transfer
processes in a deforming matrix, a multi-frontal al-

gorithm that employs the e�ective stress concept,
latent heat release, capillary pressure, and convective

heat transfer has been developed [19DP].
A kinetic theory for dense gases was applied to the

analysis of heat transfer in granular ¯ows [10DP].

Flow-induced kinetic di�usion in a rotating granular
beds was investigated with a focus on the several ¯ow

regimes that can exist in the bed [1DP]. Fundamental
data on gas-to-solid mass transfer coe�cients in a
rotating bed were measured, and the e�ects of ba�es

to produce a non-rolling bed were investigated [4DP].
Convective heat transfer to solid particles passing

through a heated tube bundle was analyzed numeri-

cally [5DP]. An analysis of the thermal aspects of
grinding via a two-temperature model for the grit and

¯uid was reported [2DP].
A dynamic equation of state has been developed for

the solid±liquid interface for a liquid-saturated medium

undergoing single-phase mass transfer and freezing±
expansion at the phase front [7DP, 8DP].
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6.1. Property determination

Research on determining the thermophysical proper-

ties of porous media continues with a focus on the
e�ective thermal conductivity of saturated systems. An
overall review of the scalar and transport equations

obtained via the volume-averaging approach discusses
non-local, linear and non-linear e�ective thermal and
¯uid properties [36DP]. Use of temperature at the

microscale level has been used to model the volume-
averaged e�ective thermal conductivity in two-dimen-
sional anisotropic systems [30DP]. An experimental

and theoretical study of a radial ¯ow packed-bed reac-
tor indicates that a two-equation and homogeneous

model yield values of e�ective thermal conductivity
that are in reasonable agreement only at low Reynolds
numbers [28DP].

Work is underway on the relation between the in-
ternal structure, or geometry, of the porous matrix and
predicted and measured properties. Light scattering in

aerogels has been used to derive data on anisotropy,
large pore fraction, induced stress, inhomogenieties
and microstructure [29DP]. A geometric model using a

random resistance network theory and parametric stat-
istics has been used to model the thermal conductivity
of snow and to link predicted values to micro-struc-

tural quantities [23DP]. The radial thermal conduc-
tivity in blown-through catalyst supports with gas
motion has been measured as a function geometrical

parameters and estimates are provided for heat trans-
fer from the catalyst [35DP]. Measurements of thermal

conductivity with a complete uncertainty analysis are
reported for compacted metal hydrides via the com-
parative method [31DP]. The growth and heat transfer

of deposited slag and ash were measured to provide
estimates of internal ash temperature and e�ective
thermal conductivity [26DP]. Related work deals with

the connection of ash microstructure and chemistry to
transport properties [24DP].
Adsorption in activated carbon in constant molar

¯ow rate was measured at low pressure to determine
the apparent di�usivity and reveal that combined
pore and surface di�usion adequately explains the

controlling mass transport mechanism [34DP]. An
improved general model of the compaction in a por-
ous medium was developed by applying elasto-plas-

ticity to determine the e�ective stress and horizontal
deformation [32DP]. The accoustic properties of satu-

rated sporous media were modeled taking into
account the e�ects of viscosity, interia and heat trans-
fer [25DP]. The potential for spalling of either fully

or partially saturated porous medium exposed to
radiant surface heating has been shown to depend on
e�ective thermal conductivity, saturation, and per-

meability [27DP]. The temperature dependence of the
overall di�usion of nitrogen, argon, and oxygen

through porous platinum was measured for 300±1000
K [33DP].

6.2. External ¯ow and heat transfer

A variety of analytical and numerical techniques
have been applied successfully to a range of heat/mass

transfer problem for external surfaces. Complex vari-
able methods via conformal mapping have been intro-
duced for two-dimensional systems at low Prandtl

number and arbitrary Peclet number [44DP]. The
boundary layer equations for heat transfer in Darcy
¯ow have been solved via the so-called Keller box
method, and results compare well with a more tra-

ditional Runge±Kuttta scheme [39DP]. The Keller box
method has also been applied to the coupled convec-
tion±radiation problem for non-Darcy free convection

of a dissipative non-gray gas past a vertical ¯at plate
[58DP] and to coupled heat and mass transfer in
mixed convection on a vertical plate and cylinder

imbedded in a saturated medium [63DP, 64DP]. Non-
similarity methods have been applied to determine heat
transfer in mixed convection from a horizontal surface
with a variable surface heat ¯ux [42DP]. Integral

methods and Prandtl's analogy have been applied suc-
cessfully to predict Nusselt numbers for a vertical plate
in free convection at large Rayleigh number [55DP]. A

two-parameter perturbation analysis for radiative
e�ects on natural convection has been applied to ¯at
surfaces and plume ¯ows [51DP].

External ¯ow and heat transfer past imbedded sur-
faces with mass ¯ow (blowing or suction) have received
attention. The fundamental problem of laminar Darcy

¯ow past a transpired surface has been solved for the
case of variable wall temperature [62DP]. A related
study concerns MHD ¯ows in a porous medium with
a periodic suction velocity at the wall [47DP].

Enhanced heat transfer in streaming ¯ow (low Rey-
nolds number) past a permeable sphere wherein the
radial surface ¯ow is Darcian has been determined

analytically for Prandtl numbers of order unity
[61DP]. This problem is extended to cylinders with
radial seepage that are embedded in a saturated med-

ium [40DP]. The e�ects of suction and blowing on
heat transfer in two-dimensional MHD Hiemenz ¯ow
through a porous medium have been numerically
determined, and the e�ects of the surface velocity on

local Nusselt numbers have been determined [65DP].
Free convection from heated surfaces facing upward

and downward in an in®nite saturated medium has

been investigated numerically to reveal the details for
the velocity and temperature ®elds [37DP, 38DP]. Ana-
lytical and numerical solutions at large Rayleigh num-

ber in free convection on a constant ¯ux plate show
that anisotropy in the medium can have a signi®cant
e�ect on heat transfer rates [60DP]. Similarity sol-
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utions for free convection driven by an exothermic
chemical reaction were obtained via similarity methods

for a vertical plate [50DP, 54DP]. The instability of
buoyant boundary layers in a type of wedge ¯ow are
shown to depend strongly on the outer ¯ow ®eld

[56DP].
Mixed convection, with viscous dissipation and ther-

mal dispersion e�ects included, has been investigated

via a seers solution for aiding and opposing ¯ows
[52DP]. Non-similarity methods have been applied for
hydromagnetic mixed convection on a vertical plate to

determine the skin friction and heat transfer coe�-
cients [41DP] and to non-Darcy mixed convection
from a horizontal surface with a variable surface tem-
perature [43DP]. A non-similar boundary layer sol-

ution for mixed convection of a power-law ¯uid on
vertical [45DP] and horizontal [46DP] plates.
Heat transfer measurements have been reported for

a vertical surface and a horizontal cylinder embedded
in a vibrating porous layer [59DP]. Double di�usive
problems for natural and mixed convection from

imbedded surfaces have also received some attention
and re-examination [53DP, 49DP, 48DP]. An exact sol-
ution for the e�ects of visco-elastic ¯ow with heat

transfer and heat generation in a porous medium over
a stretching sheet has been determined for both pre-
scribed surface temperature and heat ¯ux [57DP].

6.3. Packed and ¯uidized beds

Several papers have appeared this past year that
have focused on the fundamentals of ¯uid ¯ow, heat
transfer, and mass transfer in packed and ¯uidized

beds. The characterization of bed properties, ¯ow
structure, and controlling physical parameters have
received attention as well.
Heat transfer data from a well characterized exper-

imental study of a single-blow transient in a packed
bed yield some de®nitive information on heat transfer
and pressure drop [104DP]. The e�ect of temperature-

dependent thermophysical properties on a ®xed bed
containing heat transfer tubes was seen mainly through
velocity pro®les as they are a�ected by the wall cooled

and wall heated cases [80DP, 81DP]. A numerical in-
vestigation of a packed bed of eight spherical particles
was conducted to determine wall heat transfer coe�-
cients and the radial e�ective thermal conductivity

[81DP]. The analysis of unsteady conjugate heat trans-
fer from a single particle in a multi-particle system
showed that the prediction of heat transfer is strongly

a�ected by thermal conductivity and heat capacity
ratios [78DP]. Numerical analysis of the fully coupled
conduction±convection±radiation problem in a packed

bed of small diameter silicon ®bers in laminar ¯ow
shows that heat transfer enhancement occurs largely
via the radiation [83DP]. A two-equation energy model

and a general momentum equation were used to model

transient heat transfer in compressible ¯ow in a packed
bed [67DP]. Heat transfer to water ¯owing through a
rigid bed comprising sintered mono-dispersed metal

®bers has been measured, and an increase of critical
heat ¯ux over that for pool boiling is measured
[85DP]. A numerical study for non-Darcy forced con-

vection in a power law ¯uid with constant temperature
heating determined the e�ects of particle diameter and

the power-law index on convective coe�cients. [72DP].
A theoretical study of heat and mass transfer in a zeo-
lite bed during water desorption tested the assumption

of local thermal equilibrium [84DP].
The characterization of ¯ow in packed beds has

been carried out experimentally for intermediate Rey-
nolds numbers (0100±400) for air [86DP] and for
liquids [76DP]. Measurements of the e�ects of buoy-

ancy on ¯ow at high pressure call into question the
usual plug ¯ow assumption [69DP]. Wall e�ects on
pressure drop in an annular bed were modeled by a

multi-zone ¯ow model that produced good agreement
with measurements [101DP]. The spreading of thin vis-

cous ®lms over complex surfaces has been shown to
represent the ¯ow from a drip point over an ordered
packed bed [99DP]. An experimental study to deter-

mine the in¯uence of tube and particle diameters on
heat transfer in a wall-heated bed has shown that the
ratio of the tube-to-particle diameter is the controlling

design parameter [73DP]. Theoretical work shows
bubble growth and dynamics depends on particle size

distribution [77DP].
Models of packed bed rotary heat exchangers have

been developed to account for axial heat dispersion

and longitudinal matrix conduction [88DP]. as well as
the various compactness of the matrix [87DP]. Com-
bined mode heat transfer in soil with a bulk water ¯ow

has been obtained analytically with results being in
good agreement with ®eld data [96DP]. Energy storage

in packed beds using either sensible heat storage ma-
terials or phase-change materials was modeled and
validated with laboratory experiments [66DP, 98DP,

106DP].
Fluidization regimes in air±glass bead beds have

been experimentally identi®ed via statistical analysis of
¯uctuating temperatures within the bed [95DP,
102DP]. Cluster motion and particle-convective heat

transfer at the wall of a circulating ¯uidized bed have
been determined using a novel infrared imaging tech-
niques [89DP]. Several studies report measurements of

wall-to-bed heat transfer coe�cients, local pressure
¯uctuations, and instantaneous temperature measure-

ment [100DP, 82DP, 92DP, 97DP, 74DP, 75DP]. Data
from a hydrodynamically scaled ¯uid bed have been
used to predict particle residence time and heat trans-

fer rates [91DP].
Heat transfer in a ¯uid bed combustor was success-
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fully predicted with a bubble assemblage model that
accounted for inter-phase heat transfer and thermal

radiation to the wall [93DP].
The e�ects of ¯ow distributing grates and packing

on pressure and heat transfer in a ¯uidized bed have

been reported for various hydrodynamic regimes
[68DP]. Design parameters have been developed for
water-cooled distributors for ¯uidized bed [105DP].

Fluidized bed membrane reforming has been proposed
as an improvement over steam reforming for its econ-
omic and overall thermodynamic advantages [94DP].

Experimental and numerical studies of coupled heat
and mass transfer in packed beds have been reported.
Experiments were run on a cross-current absorber, and
results were compared to predictions obtained with

commercially available software [103DP]. Oberg and
Goswami reported experiments on a packed bed, liquid
desiccant dehumidi®er including a comparison to a nu-

merical model [90DP]. Experiments also show that op-
timal heat±mass transfer reactors can be constructed
of copper coated, compressed metal hydride powders

[79DP]. Related studies report the use of micro-encap-
sulated phase change materials to enhance heat trans-
fer in gas ¯uidized beds [71DP] and the e�ects of

particle thermal time constants on ¯uidized bed con-
vective coe�cients [70DP].

6.4. Layers, enclosures and annuli

Research on heat transfer in a variety of enclosure

types included both fundamental and technology-
speci®c topics during the past year. The more standard
problem of determining the e�ects of boundary con-

ditions on steady and transient convection has given
way to investigations focusing on the structural,
thermo-di�usion, thermo-osmosis, and thermal-®l-
tration characteristics of the matrix and the enclosure,

or layer [135DP, 120DP, 110DP, 107DP, 145DP,
125DP]. The growth of porous substrates, such as
encountered in soldering, has been modeled with a dif-

fusion-reaction mechanism and an implicit numerical
scheme to track layer growth. An optimization scheme
assigns length scales for di�usion smaller than the

smallest macroscopic ¯ow path, optimizes ¯ow geome-
try, and thereby deduces both the structural features of
the ¯ow and the important heat transfer relations
[132DP].

Convection in rotating porous systems was analyzed
to determine coriolis e�ects for stability in layers
heated from below and for weak, non-linear convec-

tion [141DP]. Bifurcations in supercritical rotating con-
vection and the nature of multiple solutions of the
time-dependent Darcy±Boussinesq equation were ana-

lyzed via a truncated Galerkin method [143DP]. A
rotating Hele±Shaw cell and a thermo-sensitive liquid
crystal tracer are discussed [142DP].

A two-temperature model for heat transfer in insula-

tion materials has been developed and applied to insu-
lating materials [144DP]. A simple semi-implicit time
stepping procedure has been successfully applied to

buoyancy driven ¯ow in a square cavity [134DP]. A
two-®eld model for natural convection in an annulus
in which porosity varies near the wall and ¯uid proper-

ties are temperature-dependent was reported [115DP].
Non-Darcy e�ects have been considered for saturated

media in which either a density maximum exists in the
¯uid or a volume-averaged heat source exists [111DP,
114DP, 124DP].

Double-di�usive e�ects that lead to layering have
been experimentally simulated with a rigid porous

matrix saturated with a salt-water solution and heated
from below [138DP]. Vertical and inclined enclosures
with binary and non-Newtonian ¯uids were also inves-

tigated [118DP, 117DP, 130DP, 131DP].
Transient natural convection in a vertical saturated

cylinder opened at the extremities and heated on the

wall was numerically determined using the extended
Darcy model and a two-temperature model [139DP].

Oscillating forced ¯ow and heat transfer in porous
heat exchangers were investigated experimentally
[128DP] and numerically [122DP]. The transient

entrance region problem for the forced convection in a
porous annulus was investigated for the case of fully
developed entering ¯ow [109DP].

Forced ¯ow in channels and pipes either partially or
completely ®lled with a porous medium was the topic

of several investigations. Analytical studies for the cou-
ette ¯ow in a partially porous channel [126DP] and in
a fully porous channel [127DP, 112DP] were reported.

Turbulent convection in a fully porous channel was
calculated using direct numerical simulation and an ad

hoc model of the structure of matrix [140DP]. A nu-
merical analysis was reported for ¯ow and heat trans-
fer in the entrance region of pipe partially ®lled with a

porous material [108DP]. Open channel ¯ow with a
porous medium was used to model the edge e�ect in
liquid composites molding [119DP]. Unidirectional,

adiabatic in®ltration with solidi®cation and re-melting
in a porous medium were modeled numerically to pro-

duce pro®les of solute, temperature and solid volume
fraction [123DP].
Predictions using a non-Darcian formulation of

axial and radial temperature distributions in forced
¯ow in cylinder were in good agreement with exper-
iments [121DP]. The use of open-celled foam in the

form of heated slender cylinders as compact heat
exchangers in a channel was analyzed for constant wall

temperature and a range of geometries [129DP]. Flow
and heat transfer were investigated for a porous
medium supporting a lateral temperature gradient and

vertical through¯ow [133DP, 137DP].
Three specialized studies in 1998 merit mention.
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Volumetric heat transfer coe�cients for cellular cer-
amics ®xed to the wall in forced convection were

measured via the single-blow transient technique
[116DP]. Fluid ¯ow and heat transfer were analyzed
numerically for channel ¯ow with intermittent heated

porous blocks on the wall [113DP]. A experimental
study by the same group considered enhancement of
laminar forced convection from heated non-porous

blocks at the wall by insertion of a porous material
between them [136DP].

6.5. Coupled heat and mass transfer

Several very fundamental studies of coupled heat

and mass transfer have appeared on the e�ect of struc-
tural inhomogeneity in the solid matrix. These include
the e�ects of thermal gradients, reactive chemical

transport, evaporation±condensation processes, and
cooling produced by the dissociation of the matrix
under high heat ¯ux boundary conditions [148DP,

173DP, 194DP, 151DP, 171DP]. The deterioration of a
brittle matrix due to freezing and thawing was exper-
imentally studied and modeled at the micropore level
[162DP].

A screening procedure based on transport attributes
has been developed for synthesizing isothermal multi-
phase reactors at the early stages of chemical process

design [169DP]. A homogenization of the pore- and
macro-levels has been proposed as the basis for model-
ing heat transfer in a non-saturated porous medium

[147DP], and a related study presents two- dimensional
numerical solutions for transport in non-saturated soils
[175DP]. Devolitization of an individual coal particle,

such as is found in a ¯uid bed reactor, has been mod-
eled as a function of heating rate and particle diameter
[184DP]. Heat and mass transfer both within and ex-
terior to a porous catalyst particle were modeled using

recently obtained kinetics for methane±steam reform-
ing [172DP].
A review of mechanisms and analytical models for

enhanced vapor-di�usion has been presented [161DP]
that demonstrates the need for additional experimental
work to sharpen future analysis. A related group of

studies has addressed various aspects of the drying
problem, including capillary phenomena, steam injec-
tion, e�ects of boundary conditions, ¯ow instability,
and all aspects of phase change including freezing and

sublimation [193DP, 155DP, 153DP, 152DP, 174DP,
178DP, 186DP±190DP, 157DP, 149DP]. A porous
media model has been applied to the continuous cast-

ing process to take account of the formation of colum-
nar dendrites in the mushy zone [191DP].
Packed bed bio-reactors, essentially mass exchangers

with reaction, have been modeled in connection with
solid state fermentation processes. Two-dimensional
models have been developed and successfully validated

against laboratory scale reactors for prescribed bed
characteristics and air saturation [182DP, 160DP]. The

pyrolysis of biomass particles in a ¯uid bed has been
modeled to investigate the coupling of the kinetic and
transport processes [183DP]. Related studies include

the simulation of a carbon-packed bed for the absorp-
tion of toluene and experiments on the nitridation of
palletized silicon at 12008C [181DP, 167DP].

Stationary porous channels and ¯at moving beds
have been investigated both experimentally and ana-
lytically. Experiments using sintered copper for a two-

phase heat sink suggest applications to the cooling of
micorelectronics [180DP]. The ¯uid±solid mechanics of
a moving bed of particles with a counterblow of a
chemically reacting gas was experimentally investigated

in the context of a model development for iron ore re-
duction [159DP]. Coupled heat and vapor ¯ow in a
¯at plate heat pipe was analyzed using a pseudo three-

dimensional analytical model [196DP].
Research on combustion in porous media has

addressed gas±solid reactions as possible thermo-

chemical heat pumps [177DP] and the e�ects of multi-
mode heat transfer and kinetics on the evaporation
and combustion of liquid fuel droplets in an inert

matrix [176DP]. One study has aimed at developing a
general model for non-equilmolar transient reactions in
porous pellets [179DP], and others treat the role of a
reaction-dependent matrix structure during the com-

bustion process [146DP, 154DP, 156DP, 168DP]. Cata-
lytic and non-catalytic porous burners under
stagnation ¯ow conditions, localized heating con-

ditions, and with radiative heat transport were the sub-
ject of modeling e�orts [158DP, 195DP, 170DP,
163DP, 192DP].

Studies related to ®res have continued to focus on
the coupled heat and mass transfer problem under
applied heat ¯uxes at the boundary [164DP±166DP].
Some new work on di�usive self-heating of wet com-

bustible materials has appeared [150DP]. The e�ect of
moisture level on coupled heat and mass transfer in
hollow cavities driven by an external ®re was modeled

to deduce an overall mass exchange coe�cient
[185DP].

6.6. Porous surfaces

During the past year, the literature has developed a

subset of articles on transport to and within porous
surfaces. Phase change heat transfer is clearly one area
that is receiving more attention. Studies range from

the augmentation of condensation [199DP] to ¯ow and
boiling studies [202DP±205DP].
Heat and mass transfer e�ects of porous inserts

down stream of a rearward facing step [200DP] and
the e�ects of pyrolysis on a carbon surface [198DP]
were modeled and analyzed numerically. Heat transfer
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with particle deposition during a vapor deposition pro-
cess was studied experimentally to characterize surface

e�ects on temperatures and mass transfer rates
[197DP]. An analytical model of the conjugate heat±
mass transfer problem for a porous wall was developed

in connection with modeling the transpiration cooling
process [201DP].

7. Experimental methods

Many experimental results are cited in other cat-

egories of this review. The purpose of this section is to
identify papers that focus on new or improved exper-
imental measurement techniques or devices that are

useful in experimental studies of heat transfer. The
publications referenced here deal explicitly with some
aspect of heat transfer measurement or include a gen-

eral review of techniques that are applicable to heat
transfer measurements.

7.1. Heat ¯ux measurements

Several authors described the design or characteriz-

ation of heat ¯ux gauges [6E, 10E, 18E]. Infrared ima-
ging technology was used to measure the surface heat
¯ux or heat transfer coe�cient [15E, 16E, 19E]. Thin
®lm technology [9E] was used to measure the heat

transfer coe�cient in a ®lm cooling application and at-
mospheric boundary layer heat ¯ux was estimated
from a single-level measurement of air temperature

[23E]. Local heat transfer coe�cients were determined
using liquid crystals [2E, 3E] and the color change
caused by chemisorption of a dye was used for local

mass transfer determination [13E, 14E]. Other
measurements of local heat transfer included optical
methods such as laser speckle photography [12E] and a

quantitative Schlieren technique [22E]. The design and
construction of guarded hot plate and cold plate
instruments was given [4E, 5E]. Several authors
reported on the use of various types of calorimeters

[1E, 7E, 8E, 11E, 17E, 20E, 21E].

7.2. Temperature measurements

Discussions of novel thermocouple applications were
presented [34E, 37E]. Thin ®lm heat ¯ux gauge tech-

nology was used to construct a fast response total tem-
perature probe [24E, 25E]. An application of laser
re¯ectance thermometry [32E] was given. Magnetic res-

onance imaging was used to measure the temperature
distribution within potatoes [33E] and may be a useful
method to measure the temperature in human tissue

noninvasively [27E]. Image processing in Mach±Zehn-
der interferometry [35E] and limitations in holographic
interferometry [39E] were described. Three papers that

describe the use of liquid crystals for temperature
measurement were published [26E, 31E, 36E]. Various

aspects of the use of infrared thermometry were dis-
cussed [28±30E, 38E].

7.3. Velocity and ¯ow measurements

Liquid crystals were used to visualize the thermal
wakes from small heated spots [40E] to determine ¯ow

direction. A new particle image velocimetry technique
was developed for studying the ¯ow near an evaporat-
ing ®lm [42E]. The use of a pulsed wire method [41E]

and signal correction for nonisothermal ¯ows [44E]
were given for hot wire anemometry. An array of ®ve
hot ®lm sensors mounted on a hemispherical tip was

used to determine the three components of local ¯ow
velocity [46E]. Flow visualization using an electronic
speckle pattern interferometer [48E] and a holographic
interferometer were described [43E]. The characteriz-

ation of two types of total ¯ow meters was given [45E,
47E].

7.4. Thermophysical property measurements

Methods to measure the thermal conductivity in
solid methane [52E] and in low thermal conductivity

materials [51E] were presented. A heat pulse method
was described for measuring the thermal properties of
soils [49E], and a sensitivity analysis was presented for

measurements of thermal di�usivity using a periodic
method [53E]. A novel method to measure thermal
and optical properties simultaneously during sintering
was given [55E]. A method to measure the index of

refraction of a liquid was described that can be used to
infer the composition of a liquid mixture [54E]. The
di�usion coe�cient of a binary liquid solution was

determined using a transient concentration pulse [50E].

7.5. Miscellaneous methods

A novel data reduction procedure for transient heat
transfer measurements [63E] and statistical design of
inverse heat transfer problems [61E] were described.

Several authors describe the use of infrared radio-
meters and IR sensors [56E±60E, 64E]. A solar pyran-
ometer using a thermoresistive element is described

[59E] and a photographic procedure to determine local
mass transfer coe�cients is demonstrated [62E].

8. Natural convection Ð internal ¯ows

8.1. Fundamental studies

Fundamental studies of natural convection in in-
ternal ¯ows span the analysis of the onset of ¯ow to
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direct numerical simulation of the turbulent Rayleigh±
Benard (R±B) problem. Perhaps for the ®rst time, a

benchmark problem has been de®ned for validating
computational ¯uid dynamics codes. This problem is
the cubical air-®lled cavity, tilted at 0, 45 and 908, with
one pair of di�erently heated faces and the other faces
having a linear temperature variation [7F].
The onset of ¯ow in the R±B problem, the stability

of mixed convection in a vertical channel, turbulence
in the horizontal layer, and direct numerical simulation
of turbulence have all received attention [3F, 2F, 8F,

5F]. The scaling laws for Nusselt-versus-Rayleigh num-
ber in the horizontal layer have also been investigated
numerically, and a new generalization has been pro-
posed [1F]. An upper bound on heat transport in R±B

convection at moderately high Rayleigh number has
been calculated via variational principles [10F].
Several studies report on the dynamics of double dif-

fusive instabilities and ¯ow intrusions in laterally
heated layers [4F, 6F]. The limitation of boundary
layer analysis for the heat surfaces is also demon-

strated [9F].

8.2. Heat generating ¯uids

An interesting extension of the R±B problem to
develop a parameterized model of the thermal evol-

ution of the planets via a temperature-dependent vis-
cosity with volumetric heat generation has been
presented [13F]. On a more fundamental level, the
heat transfer relation has been determined at low

Rayleigh numbers for a ¯at layer with adiabatic hori-
zontal boundaries and cooled end walls [12F]. Bol-
shov et al. [11F] have reported a semi-quantitative

study of the Nusselt-versus-Rayleigh number relation
with results being in good agreement with existing ex-
periments.

8.3. Thermocapillary ¯ows

Thermocapillary ¯ows have received a good deal of
attention within the context of microgravity and crys-
tal growth applications. Work also continues on the

¯oating half-zone convection problem and new results
are presented for a three-dimensional unsteady simu-
lation [22F]. The e�ect of tilt angle on the evaporation
of a liquid ®lm in a microgrooved channel has been

determined via a perturbation technique up to the ®rst
order perturbation [17F]. One study has analyzed Mar-
angoni e�ects on a liquid drop in an immiscible ¯uid

with surface reaction, the spreading of drops on a
liquid surface with surfactant, and the modi®ed R±B
problem with heat and mass transfer at the upper,

shear free surface [23F]. Weakly non-linear Marangoni
R±B convection in a layer with a uniform vertical
magnetic ®eld reveals the presence of a sub-critical

region that is dependent on the magnitude of the
impressed ®eld [18F].

A linear stability analysis of thermocapillary
instabilities in ¯oating half-zone convection in a micro-
gravity environment was compared to experiments to

determine the e�ect of the liquid bridge volume and
aspect ratio on the critical Marangoni number [15F].
Oscillatory instabilities appearing in a two-¯uid layer

via buoyancy have been studied numerically, and
results suggest criteria for encapsulation of the low
Prandtl number ¯uid and the role of Marangoni forces

in suppressing oscillatory ¯ow [24F]. The development
of oscillatory instability in thermocapillary ¯ow con-
tained in a cylindrical column was found to depend on
the deformation of the free surface and its subsequent

e�ect on heat transfer in the hot-corner region [20F].
Induced multicellular thermocapillary ¯ows in a dielec-
tric droplet translating in dielectric ¯uid with an

impressed electrical ®eld were found to depend on the
induced interfacial temperature distribution and may
either enhance or decrease heat transfer to the droplet

[21F].
In a somewhat specialized study of thermosolutal

convection in a ¯uid layer, the existence of the surface

tension e�ect is found to alter the evolution of the
¯ow ®eld and can either increase or decrease local heat
and mass transfer coe�cients [19F]. For a single com-
ponent layer with two free surfaces, thermocapillary

forces can produce stronger multicellular convection
than for the case of one free surface [16F].
New experimental facilities have been developed in

Japan to determine the thermocapillary velocity of
drop migration in microgravity [25F]. Fundamental ex-
perimental studies have also been conducted on Mar-

angoni R±B instability and convection with
evaporation to reveal the ¯ow mechanisms at the onset
of convection [14F].

8.4. Enclosure heat transfer

Experimental studies for strati®ed ¯uids in rectangu-
lar domains presented correlations for heat transfer
and new data on roll convection in high Prandtl num-

ber ¯uids and have investigated long-standing issues in
wavenumber±heat ¯ux characteristics [27F, 29F, 30F].
Experiments on the near-wall dynamics of ¯ow in R±B
convection at moderately high Rayleigh numbers

suggest a heat transport model comprising a periodic
array of two-dimensional plumes [47F]. Average heat
transfer coe�cients have been measured in R±B con-

vection at low Prandtl number [51F].
Mixing of hot and cold ¯uids in a rectangular enclo-

sure has been studied to determine both the details of

temperature and velocity ®elds, as well as the relation
between key dynamic parameters [34F, 41F]. The con-
trol of vorticity in R±B convection was approached via
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the use of Lagrange multipliers and the Pontryagin
minimum principle [42F]. A comparison of turbulent

di�usive transport in R±B convection and in internally
heated layers showed that distinct correlations of Nus-
selt versus Rayleigh number apply for the two ¯ows

and suggest that di�erent closure relations are needed
for transport in time-averaged models [50F]. The
e�ects of surface roughness with a characteristic length

equal to the to thermal layer thickness have been
found to alter the relation between the Nusselt and
Rayleigh number [49F].

The presence of mixed boundary conditions on a
square cavity leads to a sequence of Rayleigh num-
bers at which cellular ¯ows of increasing frequency
develop as the system traverses the steady to quasi-

steady regimes of ¯ow [37F]. Two-dimensional enclo-
sures were investigated for the e�ect of tilt angle
[33F], magnetic ®eld [26F, 45F], thermally coupled

walls [46F], unstable wall temperature distributions
[35F], and double di�usion e�ects [43F, 36F, 48F].
When thermal boundary conditions are time-depen-

dent, resonance between the induced ¯ow and the
period of wall ¯uctuations can be obtained with a re-
lated increase in mean Nusselt numbers [38F, 39F]. A

two-dimensional analysis was applied to a cylinder
heated on the vertical wall and cooled at the top to
reveal tendencies toward roll ¯ows with a preferred
structure [40F].

Heat transfer correlations have been developed via
experiments for a small heat source mounted on a rec-
tangular surface and shown to be signi®cantly di�erent

from the usual correlations for heated ¯at plates [44F].
For a series of parallel, interacting open-top cavities
with multiple heat sources, numerically predicted heat

transfer coe�cients have been used to determine the
e�ects of the several key parameters on heat transfer
coe�cients, especially wall conductivity [28F]. The
characteristics of the buoyant plume rising from a

®nite source in a cavity have been experimentally stu-
died and new regimes of ¯ow and heat transfer have
been suggested [32F].

Numerical studies have also been conducted for free
convection in ¯uids continuing a suspension of ®ne
particles such as dust. Thermo-rheological models were

employed in one case. Major features of the ¯ow ®elds
and heat transfer coe�cients have been presented [52F,
31F].

8.5. Vertical ducts and annuli

Turbulence in vertical cavities and annuli has been

investigated numerically to determine overall heat
transfer and turbulence budgets. With both direct nu-
merical simulation (DNS) and k±e methods, good

agreement was found with available experiments [54F,
57F]. New experimental data for heat transfer and vel-

ocity ®elds in vertical annuli with local circumferential
heating were reported [56F].

Transition from laminar to oscillatory ¯ow was
investigated via DNS to determine the contributions
made by ¯ow shear and buoyancy to the generation of

¯uctuating kinetic energy in the vertical annulus of
radius ratio two [55F]. For an eccentric annulus with
an open end, new results for developing heat transfer

and ¯ow ®eld were presented [53F].

8.6. Horizontal cylinders and annuli

Time-dependent and turbulent ¯ows were also a
focal point of research on natural convection in hori-
zontal cylinders and annuli. Numerical and experimen-

tal studies were reported on the existence of multiple
¯ow regimes and their relation to a bifurcation in the
solution [58F], on oscillatory ¯ow and its transition to

chaos [62F], on the e�ect of piecewise heating on the
outer wall [63F]; and on ¯ow structures in annuli with
Pr<0.3 [64F].

Additionally, a numerical study of convection in the
horizontal annulus containing a micropolar ¯uid near
its maximum density reported overall heat transfer

coe�cients [59F]. Special studies were conducted for
the inclined annulus [60F] and for the annulus with
multiple geometric perturbations on the inner cylinder
[61F].

8.7. Mixed convection

A variety of ¯ow geometries have been the focus of
largely numerical studies of mixed convection, some of
more fundamental importance than others. Developing

¯ow in a horizontal concentric annulus with an adia-
batic outer wall exhibits secondary ¯ows that are
mainly con®ned to the entry length [69F]. Buoyancy
e�ects on heat transfer from a horizontal surface in a

partially open enclosure can have a signi®cant e�ect
depending on the conditions imposed on the open sur-
face [67F]. Several studies for vertical channels exam-

ine buoyancy e�ects on ¯ow structure, viscous
dissipation and heat transfer [74F, 70F, 73F, 66F, 65F,
68F].

A study of contaminant removal in a two-dimen-
sional enclosure with one inlet and one outlet reveals
that buoyancy can have a signi®cant e�ect on removal

time [72F]. A related study examines the heat transfer
relations for a rectangular cavity that is both heated
and ventilated from the side walls [71F].

8.8. Complex geometries

Several specialized ¯ow geometries have been the

focus of research this past year. A parametric study of
a combined vertical and horizontal enclosure indicates

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366 273



that ¯ow and heat transfer can be approximated by
the processes within the vertical and horizontal subdo-

mains [81F]. A numerical study of three-dimensional
convection in a cube with one side open reports overall
heat transfer coe�cients for low Rayleigh numbers

[84F].
Double di�usive convection in a v-shaped sump is

characterized by thin boundary layers and di�ering

gradients of solute and temperature for a general class
of boundary conditions [79F]. Multi-cavity, or parti-
tioned, enclosures have been the subject of several fully

numerical studies addressing both free and mixed con-
vection [78F, 85F, 82F]. Boundary conditions compris-
ing multiple heat sources in parallel, interacting
activities have been varied to produce an overall heat

transfer correlation for such [75F].
A numerical investigation of natural convection in a

horizontal rod bundle has produced heat transfer

results that are in good agreement with experimental
data [76F]. Heat transfer correlations were also
obtained for a cooled cylinder in a rectangular cavity

®lled with water near the density maximum [83F] and
for heating of a ®nite cylinder in a ¯uid well above the
density maximum [77F]. Free convection in green-

houses heated by an array of heating pipes has been
numerically determinedwith several internal geometri-
cal factors being considered [80F].

8.9. Fires

Fundamental studies of heat transfer and ¯uid ¯ow

in ®res has touched on the structure of a one-dimen-
sional spray di�usion ¯ame [88F] and the e�ective
thermal conductivity during ¯ame spread over a shal-

low sub-¯ash liquid fuel layer [87F]. A related study
examines the radiant heat ¯ux to a body engulfed in a
pool ®re [90F].

Basic investigations that have signi®cance to human
safety include a simulation of turbulence of indoor
gas ¯ow in the presence of an ignition source [91F].

The problem of ¯ashover has been investigated to
determine the interacting in¯uences of material prop-
erties, room con®guration and ventilation [86F]. The
thermal properties of ¯ame resistant fabrics in a ¯ash

®re have been investigated for to develop thermal de-
sign guidelines for fabric design [92F]. Peacock et al.
have presented a discussion of the overall modeling

strategies and issues involved with developing ®re
models [89F].

8.10. Miscellaneous

Fundamental numerical studies of free convection in

the spherical annulus and in a spherical sector reveal a
number of interesting structural aspects of the ¯ow
and heat transfer, including hysteresis e�ects, branch

solutions, and local heat transfer coe�cients [98F,
99F].

The study of free convection loops placed in a mag-
netic ®eld has been reported in connection with the
development of MHD power generators [96F, 97F],

and an analytical model has been developed for the
induced electric current from such a loop [95F].
An experimental study of longitudinal temperature

distributions in double-glazed window cavities has
highlighted the role of convection in overall heat trans-
fer process [93F]. With a focus on free convection in

complex, partitioned ¯ow geometries, Dyko and Vafai
[94F] have reviewed all of the factors related to the op-
timal thermal design of aircraft braking systems.

9. Natural convection Ð external ¯ows

9.1. Vertical plate

Studies on buoyancy driven convection heat transfer
from a vertical plate include ¯ows of power-law non-
Newtonian ¯uids [6FF] and micropolar ¯uids [2FF] A

new physical model [5FF] predicts the onset of tran-
sition along a vertical plate, while several turbulence
models describe the turbulent ¯ow along a ¯at plate
within an isothermal cavity [1FF]. An analytical and

experimental study of conjugate natural convection
shows the interaction between a ¯uid and slabs of
di�erent material [7FF]. The in¯uence of horizontal

rectangular grooves on a vertical plate on the local
and average heat transfer [8FF] as well as in¯uence of
the equivalent of venetian blinds on heat transfer from

a vertical surface [9FF] have been studied. Numerical
studies describe transient natural convection from sur-
faces with an oscillating mean surface heat ¯ux [4FF]

and a sudden change in surface temperature [3FF].
Other studies of ¯ows on vertical plates include ther-

mocapillary convection to bubbles in close proximity
to a heated wall [12FF], and the ¯ow and heat transfer

with falling liquid ®lms [11FF], including the in¯uence
of gas absorption [10FF].

9.2. Horizontal and inclined plates

A study of the transient cooling of a thin horizontal

plate [13FF] in an isothermal cavity uses asymptotic
and numerical techniques. Numerical solutions of the
¯ow and heat transfer from a vertical rectangular ®n
attached to a partially heated horizontal base have

been reported [14FF].

9.3. Cylinders and blunt bodies

An analysis [19FF] describes the heat transfer from
horizontal cylinders at small Grashof number, while
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experiments [22FF] indicate the in¯uence of humidity
on convective heat transfer from small cylinders.

Entropy generated in laminar natural convection from
a horizontal isothermal cylinder has been described
[15FF]. Analyses for unsteady ¯ows include thermal

and solutal buoyancy forces [20FF], combined heat
and mass transfer [16FF] and convection in the stagna-
tion point region of a three dimensional body [21FF].

Convective heat transfer from a complex surface has
been described analytically [17FF], while heat transfer
including interaction with pyrolosis on di�erent shaped

obstacles [18FF] and plumes from a vertical cylinder
[23FF] has been studied experimentally.

9.4. Mixed convection

Mixed (combined forced and natural) convection
studies consider the in¯uence of a magnetic ®eld on
oscillating convection [28FF], boundary layer ¯ow of a

micropolar ¯uid on a horizontal plate [26FF] and ¯ow
over an isothermal plate of a variable viscosity [27FF]
¯uid. Similarity, solutions include di�usion and chemi-

cal reaction over a moving horizontal plate [25FF] and
the in¯uence of a continually stretching sheet on con-
vection [24FF].

9.5. Miscellaneous

Analytical solutions describe the performance of

pin-®n heat sinks [31FF], while experiments on the
heat ¯ow from helical coiled tubes in air [29FF] show
the in¯uence of various factors on overall heat
transfer. The cooling capacity in electronic equipment

casings [33FF] and convection in electro-chemical sys-
tems [32FF] have been described. Calculations show
the heat transfer losses from various surfaces held

inside a room that includes heated walls, ¯oor and
ceiling [30FF].

10. Rotating surfaces

10.1. Rotating disks

Two experimental studies considered the e�ect of a
jet on a single rotating disk [2G, 3G]. Several theoreti-

cal studies were performed on heat and mass transfer
to a spinning disk [1G, 5G, 7G, 8G]. The heat transfer
within two parallel rotating disks was also investigated

[4G, 6G].

10.2. Rotating channels

Cooling of gas turbine engine components continues
to be a driving force in the study of ¯ow and heat
transfer in rotating channels. Several authors studied

the ¯ows in rotating rectangular channels, some with
ribbed surfaces [12G, 17G, 20G, 24G]. Experimental

and numerical investigations were performed on rotat-
ing two-pass channels of rectangular cross section
[11G, 14G±16G, 23G, 25G]. The e�ects of jet impinge-

ment [9G, 27G, 28G] wall transpiration [19G] and ejec-
tion holes [26G] were reported for rotating rectangular
channels. Flow and heat transfer were investigated in

rotating smooth-walled tubes [21G, 29G]. The e�ect of
a rotating inner cylinder on forced convection through
a concentric cylindrical annulus was studied [18G,

22G, 30G]. Numerical solutions were presented for
mixed convection in a horizontal cylindrical annulus
when the inner cylinder [13G] or outer cylinder [31G]
rotates. A numerical solution was obtained for the

case of a gas-®lled rotating annulus [10G] when strong
natural convection is present.

10.3. Enclosures

A review of ¯uid motion inside rotating cylindrical
containers was given [35G]. Heat and mass transfer

within rotating horizontal convection layers was inves-
tigated [33G, 34G, 43G]. Experimental results were
presented for unsteady thermal convection within a

vertical circular cylinder and a section of a cone heated
from below [36G, 37G]. The e�ects of a rotating oscil-
lating endwall disk on a vertical circular cylinder was

investigated [38G]. Numerical solutions were published
for mixed convection in a spherical annulus rotating
about its vertical axis [41G]. Applications of heat
transfer in rotating enclosures include food-containers

[42G], heat pipes [39G], condensers [40G] and rotary
kilns [32G].

10.4. Cylinders, spheres, miscellaneous shapes

Mass transfer from a rotating cylinder with an
impinging slot jet was measured [46G, 47G]. Other

rotating geometries that were studied include spheres
[48G], cubes [44G] and turbine blades [45G].

10.5. Miscellaneous

Heat transfer between two opposed counter-rotating
jets was reported [50G]. An investigation into the per-

formance of a centrifugal bubbling apparatus was pre-
sented for use in gas±liquid contact processes [49G].

11. Combined mass and heat transfer

11.1. Ablation and transpiration

A number of studies in the area of ablation were
performed. Two of the investigations considered heat
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transfer and thermal stresses during the ablation of
ceramics. The ®rst utilized a numerical model to pre-

dict temporal temperature ®elds during laser drilling
[3H]. The second focused on the experimental
measurement of laser re¯ectance and surface tempera-

ture on a variety of composite materials [7H].
Another study developed a general departure function
to characterize ablation of a cavity in comparison to

ablation of a ¯at plate [4H]. Researchers also utilized
experimental data in developing numerical models to
describe the ablation of volatile ®lms [1H]. In ad-

dition, a fully three-dimensional k±e model for the
laser heating of solid substances with gas impinge-
ment was developed [5H].
A computational study utilizing the vorticity±vel-

ocity method was performed to examine the e�ects of
wall transpiration the convective ¯ow, and heat trans-
fer in the entrance region of horizontal ducts [2H].

Transpiration was also studied in a large scale, en-
vironmental context. Investigators used an extensive
global root database to describe the root distribution

in a widely-used land model [6H]

11.2. Film cooling

The e�ect of unsteady ¯ow on ®lm cooling was

studied. Investigators considered the e�ect of an
unsteady wake [13H], periodic unsteady wakes with
varying free stream turbulence [16H] and bulk ¯ow

pulsations [21H]. The e�ect of coolant density, and
blowing rate was studied [14H]. The e�ect of turbu-
lence in single and staggered rows of cooling holes on

the e�ectiveness and heat transfer was considered
[8H±10H]. In addition the e�ect of the length-to-di-
ameter ratio on the mean velocity and also on the
turbulence intensity [12H] were studied. Water±air

cooling technology was applied to the cooling of tur-
bine blades [20H]. Numerical simulations were used
to study heat transfer characteristics of compound

angle holes [19H], the ®lm cooling e�ectiveness of a
¯at plate by a row of laterally injected jets [18H], and
evaporative cooling of liquid ®lms in turbulent mixed

convection channel ¯ows [23H]. Heat and mass trans-
fer in a heated vertical tube in the presence of a fall-
ing ®lm of water on the inside wall was studied
[17H]. The in¯uence of ¯ow leakage through a gap

on the performance of ®lm cooling [24H], and the
®lm cooling e�ectiveness produced by slot injection
into a uniform cross ¯ow was studied [15H]. The

results of experiments were used to assess the per-
formance of algebraic models in predicting heat trans-
fer with supersonic ®lm cooling [11H]. A fuel ®lm

model incorporating both spray±wall and spray±®lm
interactions was developed for use in the simulation
of combustion [22H].

11.3. Jet impingement heat transfer Ð submerged and
liquid jets

In studying the heat transfer due to submerged jet
impingement, several numerical techniques were uti-

lized. In the Reynolds-averaged context, investigations
focused on the ¯uid ¯ow and heat transfer character-
istics on both single [33H], and multiple [43H] jets

impinging on con®ned surfaces. Large eddy simu-
lations were used to study the impingement of both
round and planar [36H, 42H] jet impingement. Direct

numerical simulation was used to investigate the
impingement of a round jet into a parallel disk [39H].
An experimental study on the isothermal convective
mass transfer behavior of a circular cylinder exposed

to an air jet was performed [38H] The e�ect of the
angle of inclination on the heat transfer characteristics
was considered [40H, 32H]. Experiments were used to

develop correlations for mass transfer e�ciencies for a
hot air jet impinging on a cool water surface [31H].
The impingement of liquid nitrogen jets on one

another at supercritical pressure and temperature was
studied [41H]. The ¯ow structure of inclined jets [34H]
and con®ned jets [27H] impinging on a ¯at plate was

examined. Liquid jet and spray impingement cooling
were studied [35H, 26H]. Forced and mixed convection
heat transfer from an array of cylinders to a liquid jet
was studied for a range of Reynolds, Prandtl, and

Grashof numbers [25H]. Distributions of the local heat
transfer coe�cient were measured in a model engine
wall [28H]. Researchers also considered the e�ects of

jet swirl, oscillation, and spread in combined heat and
mass transfer jet impingement [29H, 30H, 37H].

11.4. Drying

Heat and mass transfer are integral to drying. Sev-

eral studies considered the drying of foodstu�. In the
drying of fruits and vegetables, investigators performed
both experimental studies [56H, 95H, 44H, 76H±78H,

84H, 86H] and numerical modeling and simulation
[49H, 79H, 80H, 87H, 59H, 65H]. These include simu-
lation of the cooling process for tortillas [97H], in

which a model was developed to predict temperature,
moisture content, and water activity of evaporatively
cooled tortillas, and the simulation of deep bed drying
of hazelnuts [69H]. Investigators also performed a

combined experimental±numerical investigation of the
heat and mass transfer in cheddar cheese during cool-
ing [51H, 88H] and food products during bulk forced-

air precooling. Recent investigations also include heat
and mass transfer during refrigeration [48H], frying
[53H, 72H, 68H] and microwaving [70H]. In addition

to foodstu� drying, investigators considered the drying
of non-foodstu� material [52H, 94H, 71H, 96H, 82H,
74H, 67H, 57H, 60H]. These include both theoretical
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[83H], and experimental [100H, 85H] drying of paper,
and the drying of polymer ®lms [47H, 63H, 45H]. The

drying of soils and crops was studied. These include
the modeling of coupled heat and mass transfer in a
solar crop dryer [54H], the development of heat and

mass transfer relations [62H], and a fully three-dimen-
sional, numerical simulation of heat and mass transfer
in unsaturated soils [99H]. Researchers also investi-

gated a variety of drying techniques [64H, 89H±92H,
46H, 50H]. Mathematical models were developed to
predict moisture content and temperature in an indir-

ect contact rotary dryer [93H]. Modeling and simu-
lation was utilized in studying industrial convective
dryers [73H] and spouted bed dryers [55H]. In ad-
dition, a simulation tool which models the dryer sec-

tion of a paper machine was developed [58H]. Other
studies include the investigation of spray dynamics in a
pilot spray dryer [75H], the analogy between heat and

mass transfer during the drying of liquid materials
[81H] the modeling of forced-air precooling [61H], the
modeling of hydrothermal and hydromechanical beha-

vior of clay barriers [98H], and the measurement of
tree transpiration in forests [66H].

11.5. Miscellaneous

A variety of studies in which heat and mass transfer
occurs in combination have been performed. Several
included the utilization of computational ¯uid

dynamics (CFD) in studying heat and mass transfer
[113H, 101H, 106H]. CFD was also used in the devel-
opment and assessment of models in combined heat

and mass transfer [114H]. Hydrodynamic e�ects were
also considered; investigators studied the e�ects of den-
sity and pressure gradients [107H], coherent structures

[104H], instabilities due to an unsteady density strati®-
cation [109H], intense mixing [110H], and natural con-
vection [112H]. Researchers studied heat and mass
transfer in the presence of non-isothermal chemical

reactions [108H]. Researchers also considered the redis-
tribution of soil water by tree roots [102H], the model-
ing of con®ned multi-material heat and mass transfer

[103H], and the in¯uence of local feedback mechanisms
on land±air energy and mass exchange [111H]. In ad-
dition, transfer from internal ¯ows to hemispheres and

¯at plates was made using the napthalene sublimation
technique [105H].

12. Change of phase Ð boiling

Thermal transport phenomena associated with
liquid-to-vapor phase change are addressed in the pub-

lications reviewed in this section and classi®ed into ®ve
major categories: droplet and ®lm evaporation (27
papers), bubble characteristics and boiling incipience

(19 papers), pool boiling (43 papers), ¯ow boiling (30),
and two-phase thermohydraulics (13). In addition to

these 132 papers, the interested reader will ®nd refer-
ence to studies of evaporative and ebullient heat trans-
fer among the papers included in: change of phase Ð

condensation (JJ), heat transfer applications Ð heat
pipes and heat exchangers (Q), and heat transfer appli-
cations Ð general (S).

12.1. Droplet and ®lm evaporation

The 1998 archival literature provides several funda-
mental studies of droplet evaporation, including the
introduction of a new dimensionless group [17J], the

development of a numerical solution algorithm [7J],
detailed numerical simulation of hollow-cone water
sprays [9J], and evaluation of non-equilibrium e�ects

in droplet-laden ¯ows [13J]. The evaporation of sol-
ution droplets was examined in [4J] for binary fuel
mixtures, in [10J] for ideal mixtures of alcohols, and in

[26J] for spray pyrolisis in which solute precipitation
e�ects must be addressed. The evaporation of a single
droplet on a solid surface, using a molecular dynamics
simulation method, is described in [11J], weak evapor-

ation (or condensation) on a sphere in [20J], and direct
contact evaporation for a droplet rising in an immis-
cible liquid in [23J].

The evaporation of atomised droplets in a turbulent
environment attracted considerable attention in the
two-phase community. [18J, 19J] used enhanced phase-

Doppler anemometry to explore droplet collisions and
coalescence, secondary atomization, and air stream
heating. While the results of a direct numerical simu-

lation of evaporating droplets in low Mach number
¯ows was reported in [12J], [2J] provides numerical
results for the e�ects of gas temperature ¯uctuations
on a turbulent evaporating spray. The in¯uences of

inlet gas swirling and heating on droplet evaporation
are described in [27J].
Growing interest in applications of evaporative cool-

ing and optimization of evaporation processes
prompted the development of a general mathematical
model of evaporative cooling devices by [8J]. Evapor-

ation of liquid ®lms is described in [15J] dealing with
the in¯uence of wall proximity on the interface equili-
brium temperature, in [14J] dealing with the evapor-
ation rates at the tip of the liquid wedge under a

bubble, and in [1J] providing a considerable extension
of the database and correlations. [21J], [5J], and [3J]
describe evaporation processes associated with solar

stills, desalination process, and food preservation, re-
spectively. [16J] explores evaporating ¯ows in micro-
channels, [25J] presents system-level analyses of `®rst-

wall' liquid surfaces for high power fusion reactors,
and the ®lm evaporation of refrigerants, ¯owing in
small diameter tubes, is the subject of [24J] and [22J].
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Heat transfer correlations for evaporation in thermosy-
phons are presented in [6J].

12.2. Bubble characteristics and boiling incipience

The dynamics of vapor and gas bubbles in uncon-
ventional environments attracted considerable atten-
tion from the two-phase ¯ow community. The

behavior of preheated gas bubbles injected into a
liquid bath is described in [32J]. [29J] proposes a
microwedge model to explain binary mixture bubble

growth and departure under microgravity conditions.
[35J] presents the results of a comprehensive numerical
simulation of a single vapor bubble of variable radius

moving in a superheated or subcooled liquid. [46J]
points to the bene®ts of a bubble sliding along the
heated surface to explain the higher heat transfer coef-

®cients observed for down¯ow than up¯ow ¯ow boil-
ing. [28J] reports on the use of a photographic
technique to determine vapor volume ¯ow departing
from a single wire. While the e�ects of electric ®elds

on the behavior of a bubble attached to a wall is the
subject of [33J], the growth and collapse of a bubble in
an ultrasound ®eld is studied in [44J]. The e�ects of oil

enrichment at the interface of a bubble embedded in
an in®nite refrigerant±oil mixture are described in
[40J].

Bubble formation was the subject of several studies,
including [37J, 36J] in which microscale homogeneous
nucleation was observed, [31J] in which an interphase
¯uctuation propagation model is proposed to explain

heterogeneous nucleation processes, [34J] which ident-
i®es a new liquid±vapor interface instability and its
impact on bubble formation in microgravity, and [42J,

43J] which discuss the e�ect of microchannel spacing
on bubble formation. Boiling incipience in supercritical
¯uids is reported for the ®rst time in [45J]. Bubble for-

mation and growth during underwater detonations are
studied experimentally in [38J, 39J] and ®lm boiling
incipience directly from natural convection is described

in [30J]. In [41J] vapor generation during ¯ash boiling
is described.

12.3. Pool boiling

Many of the pool boiling heat transfer studies in the
1998 literature deal with extension of the ebullient

transport knowledgebase to unconventional ¯uids, en-
vironments, and geometries. [73J] describes the in¯u-
ence of subcooling on the pool boiling of methanol on

a tungsten wire, while [57J] reports on the nucleate
pool boiling of mercury in the presence of a magnetic
®eld. [85J] deals with the simulation of ®lm boiling

near the thermodynamic critical point. The impact of
long-term reduced gravity on pool boiling and bubble
dynamics is reported in [80J], the use of an electrical

body force to simulate the e�ects of variable gravita-

tional acceleration on pool boiling in [84J], and the in-
teraction of an acoustic ®eld with boiling, at both
terrestrial and microgravity conditions, is described in

[82J, 83J]. A new theoretical model for the pool boiling
of binary mixtures is o�ered in [65J], while experimen-
tal results for nonazeotropic binary mixtures of re-

frigerants are reported in [63J], for binary hydrocarbon
mixtures in [48J], and water/propanol mixtures Ð over

a range of gravitational accelerations Ð in [47J].
Nucleate pool boiling on downward and upward-

facing, inclined surfaces is detailed in [77J], on a down-

ward-facing hemispherical surface in [61J], along a
heat exchanger tube in [55J], on the outside of a hori-

zontal tube in [56J], and on the inside of relatively
large diameter short tubes in [66J]. The studies docu-
mented in [58J, 49J] explore boiling in a narrow verti-

cal slot, while [59J] presents an extensive compilation
of data for boiling in a small cylindrical enclosure,
[86J] provides data on ebullient cooling of a power

module, and [87J] discusses parametric e�ects on boil-
ing in a closed two-phase thermosyphon.

In boiling heat transfer, the Critical Heat Flux
(CHF), or `crisis,' represents the heat ¯ux value at
which vapor blankets the heater surface and the heat

transfer coe�cient deteriorates. [81J] describes a new
dry-out mechanism for the pool boiling crisis and [78J]
o�ers new observations on the liquid±solid contact

patterns and bubble structure distribution at ¯uxes
approaching the CHF value. Critical heat ¯ux in con-

centric-tube open thermosyphons and vertical, closed-
bottom rod bundles is discussed in [64J] and [69J], re-
spectively. A CHF correlation for droplet impact cool-

ing is the subject of [62J].
Despite the relatively high heat transfer coe�cients

associated with boiling heat transfer, considerable
e�ort is devoted to the identi®cation, development,
and implementation of pool boiling enhancement tech-

niques. In [75J] attention is focused on boiling from a
uniform thickness pin ®n, in [74J] on the enhancement
associated with boiling on micro-graphite-®ber compo-

site surfaces, in [89J] and [79J] on the use of surfac-
tants to enhance nucleate boiling, in [68J] and [67J] on

the use of electrical ®elds on pool nucleate boiling
from heat exchanger tubes, and in [88J] on the in¯u-
ence of electric ®elds on ®lm boiling. The bubble

characteristics and governing phenomena responsible
for the e�ectiveness of ebullient thermal transport
from structured enhanced surfaces is described in a

series of publications by Webb and Chein [50J±54J].
Film boiling heat transfer is the subject of several

publications, including [76J] presenting a correlation
for binary mixture, pool ®lm boiling on horizontal
cylinders, [71J] presenting an analytical solution for

®lm boiling on spheres and vertical plates, [60J] o�er-
ing a theoretical dry-spot model for transition boiling,
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[72J] exploring the ampli®cation of wall temperature
¯uctuations during transition pool boiling, and [70J]

which describes the e�ect of refractory paints on mist
¯ow heat transfer rates from metallic surfaces.

12.4. Flow boiling

The broad range of interactions between a pumped
¯ow of liquid and vapor bubbles generated and
released on a heated surface provide a large number of

¯ow boiling heat transfer mechanisms and a diverse
¯ow boiling literature. The primary research and mod-
eling challenges facing the two-phase community are
reviewed in [117J] and are re¯ected in the 1998 archival

literature. A numerical simulation technique is
described in [96J], a broad review of subcooled ¯ow
boiling correlations and ¯ow regimes in [98J], a tech-

nique for identifying the thermal equilibrium entry
length is presented in [91J], and experimental results
for ¯ow boiling in sub-atmospheric, vertical ¯ow in

[105J].
The in¯uence of channel geometry on ebullient ther-

mal transport is the subject of [106J] Ð where atten-
tion is focused on a heated inner annulus, of [109J] Ð

dealing with a nonuniformly heated surface, and of
[107J] and [112J] Ð addressing behavior in small-di-
ameter tubes and microchannels, respectively. The e�-

cacy of several ¯ow boiling enhancement techniques is
reported in [95J] Ð dealing with nitrogen ¯owing over
a structured surface, in [104J] Ð dealing with the use

of annular crevices, and in [114J] reporting the results
of interference sleeves on cylinders. Field e�ects were
addressed by [99J], which describes the e�ect of an

electric ®eld on ¯ow boiling heat transfer and by [110J]
which provides results of an experimental study of
¯ow boiling under microgravity conditions.
The archival literature of 1998 provides insight into

progress in the understanding and enhancement of the
¯ow boiling `crisis,' including both critical heat ¯ux
and dryout. A new dry-spot model for CHF prediction

is the subject of [92J], the prediction of liquid ®lm dry-
out in narrow channels is the subject of [116J], a
method of calculating dryout and post-dryout heat

transfer in tubes is described in [94J], and CHF on rod
bundles in [103J]. The critical heat ¯ux from a simu-
lated microelectronic chip is discussed in [108J] and
enhancement of CHF with microchanneled surfaces in

[113J].
Flow boiling heat transfer of refrigerants attracted

considerable attention, including a 3-paper sequence

by Thome and co workers [100J±102J] on the relation-
ship between two-phase ¯ow patterns and heat transfer
for refrigerants in horizontal tubes, [115J] on the heat

transfer characteristics of microchannels, [90J] and
[111J] on the thermo¯uid behavior of ®nned tubes,
[118J] and [119J] on ¯ow boiling of refrigerant/oil mix-

tures in micro®n tubes and plain tubes, respectively,
and [97J] and [93J] on ¯ow boiling heat transfer to

binary mixtures of refrigerants.

12.5. Two-phase thermohydraulics

The design of ¯ow boiling systems must include

attention to the thermohydraulic aspects of two phase
¯ow. Contributions to the 1998 archival literature in
this domain included: [127J] Ð which presents a
coupled phasic exchange algorithm for the prediction

of general two-phase ¯ows, [120J] Ð which applies
control analysis techniques to the determination of the
boiling boundary in a heated channel, [124J] Ð which

o�ers a new transition boiling model for use in the
Relap5/mod3 computer code, [131J] Ð which explores
two-phase instabilities in a natural circulation loop,

[130J] Ð which o�ers data for ¯ow in slightly inclined
tubes, [132J] Ð which develops an analytic interfacial
area equation, and [125J] and [121J] Ð which deal

with determination of void fraction distributions using
electrical impedance measurements and gamma densi-
tometry, respectively.
The dispersion of two-phase releases is the subject of

[122J] and [129J]. A numerical simulation of the non-
homogeneous ¯ow in a di�user pipe is presented in
[123J]. Aspects of slug ¯ow are explored in [126J] Ð

focusing on the onset of slugging in a strati®ed ¯ow
approaching a junction and [128J] Ð the role of longi-
tudinal dispersion in fully-developed slug ¯ow in a

channel.

13. Change of phase Ð condensation

Papers on condensation during 1998 were separated
into those which dealt with surface geometry e�ects,

those on the e�ects of global geometry and thermal
boundary conditions, papers presenting techniques for
modeling and analysis, papers on free-surface conden-
sation, and papers dealing with binary mixtures.

13.1. Surface geometry and material e�ects

One paper in this category dealt with the e�ect of
surface conductivity [2JJ]. A hygrogenated carbon ®lm
for promoting dropwise condensation of steam was

coated on various metallic surfaces. Three papers
focused on the nature of the surface material. One dis-
cussed the hygrogenated carbon ®lm [3JJ], another was

on a PTFE coating [4JJ], and a third was with a com-
posite nickel±PTFE plated coating [1JJ]. The last in
this category dealt more with the coating processes,

but did discuss a synthesized surface with a polymer
®lm for enhanced heat transfer in steam condensers
[5JJ].
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13.2. Global geometry and thermal boundary condition
e�ects

Several papers presented results for condensing ¯ow
within con®gured tubes. In the ®rst, heat transfer coef-

®cients for condensation of steam on thick-walled hori-
zontal tubes were given [14JJ] and, in another, a
review of techniques for integral, ®nned tubes was pre-

sented [7JJ]. A numerical analysis was documented for
vertical, ®nned surfaces to show the e�ects of ®n shape
on heat transfer enhancement [13JJ]. Several papers

addressed condensation inside tubes. In one, regimes
were described for ¯ow in smooth, horizontal tubes
[9JJ]. Another discussed the value of micro®nned sur-
faces in horizontal tubes [15JJ]. A correlation equation

was given, including the e�ects on pressure gradient.
In a third, ¯ow maps and transition points were docu-
mented showing the e�ects of inclination angle for R-

11 condensation in smooth tubes [17JJ]. And, in a
fourth, the e�ects of coiled wire inserts in a horizontal
tube were evaluated [6JJ]. The measurements indicated

a doubling of the condensation heat transfer coe�cient
due to the coil. Several papers addressed nuclear reac-
tor geometries. One addressed the loss of coolant acci-

dent in the cold leg of a primary loop [10JJ], another
presented a model for condensation in a containment
[11JJ], and a third discussed the e�ects of condensation
on depressurization during a fusion reactor ingress-

of-coolant event [16JJ]. One paper presented a numeri-
cal prediction of the performance of a high-e�ciency
boiler [12JJ] and another released a model for optimiz-

ation of falling ®lm evaporation in a desalination plant
[8JJ].

13.3. Modeling and analysis techniques

An article was presented on the fundamentals of

condensation heat transfer, including the complications
which arise with forced convection [26JJ]. Another
accounted for the e�ects of subcooling of condensate

when there is a variable temperature surface [24JJ]. A
stability analysis was presented for ®lm-wise conden-
sation where it was noted that the surface tension

always stabilized a ®lm but the e�ects of van der
Waals force depend on the Hamaker constant [23JJ].
An analysis was presented for condensation with exter-
nal ¯ow over a horizontal tube [27JJ]. A single-tube

model was presented for predicting the frequency
characteristics of multi-tube, two-phase, condensing
¯ow [21JJ]. A weakness of a previous equivalent Rey-

nolds number model was noted and modi®cations were
recommended for condensation in smooth tubes [25JJ].
In a similar paper, the utility of the equivalent Rey-

nolds number model for application to condensation
in small diameter tubes was shown [31JJ]. Two papers
were with the reactor analysis program Ð RELAP. In

one, a direct contact condensation model was devel-
oped, including the transition criteria [22JJ] and in

another, a comparison of models in the program was
made [18JJ].
One paper dealt with cooling tower analysis. It pre-

sented a study of non-equilibrium characteristics of
mixtures and noted an unusual rise in interfacial tem-
perature immediately below the onset of condensation

[29JJ]. A model was presented for the growth of micro-
drops in inert gases when the droplets are of the size
of the mean free path [19JJ]. A model was presented

for the condensation coe�cient of superheated vapor
condensing inside of tubes [30JJ]. A numerical model
for including the e�ects of the sorption curve was for-
mulated for condensation on rotary heat exchangers

[28JJ]. Rules for ®tting the condensation curve with
piecewise linearization were given [20JJ].

13.4. Free surface condensation

Two papers focused on free surface condensation. In

one, a model was presented to predict drop size distri-
butions in dropwise condensation [32JJ]. Thermal re-
sistance in the drop and the promoter layer must be
included in the analysis. Another experimented with

choking and the behavior of under-expanded vapor
jets [33JJ], where a model was developed which
included entrainment and condensation e�ects.

13.5. Binary mixtures

Several papers were with multiple components. In
one [34JJ], the e�ects of having noncondensables were
addressed for vertical plates, to give the ®n tempera-
ture and heat transfer coe�cient distributions. Another

addressed steam condensation augmentation with
methylamine [38JJ]. A third presented a model which
describes the e�ect of back di�usion for turbulent ¯ow

condensation in tubes with nonazeotropic binary re-
frigeration mixtures [37JJ], while a fourth, also with
nonazeotropic refrigerant mixtures, discussed the

e�ects of non-ideal properties [39JJ]. Marangoni con-
vection was experimented upon under condensation in
binary drops [36JJ]. A data set for model evaluation

on multicomponent condensation in the shell and tube
con®guration was presented [40JJ]. The e�ect of non-
condensables on condensation in a rotating drum, with
scraper, was analyzed [41JJ]. Finally, condensation in

premixed ¯ame quenching was discussed [35JJ].

14. Change of phase Ð freezing and melting

14.1. Melting and freezing of sphere, cylinders and slabs

Freezing studies in cylindrical, ellipsoidal, slab, plate
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and miscellaneous geometries were presented in this
section. In cylindrical geometry the studies included: a

study of supercooling phenomenon and freezing prob-
ability of water inside horizontal cylinders [3JM]; an
analytical study of natural convection on cryogenic

pipe freezing [9JM]; freezing and melting with multiple
phase fronts along the outside of a tube [14JM]; and
frost deposition on a cylinder in cross ¯ow [13JM]. In

elliptical geometry an analytical solution of the heat
transfer process during contact melting of PCM inside
a horizontal elliptical tube was presented [4JM], as

well as heating and melting of slender samples in
monoellipsoidal mirror furnaces [7JM]. Slab geometry
studies included: interface temperature during high-
Peclet number ¯ow over a ¯at substrate [2JM];

measurement of the heat transfer coe�cient in food
thawing using an in®nite slab geometry approximation
[6JM]; and undercooling and contact resistance in stag-

nation-¯ow solidi®cation on a semi-in®nite substrate
[12JM]. A study in plate geometry of solidi®cation of
pure metals using Greens functions was presented

[8JM].
Several other miscellaneous geometric studies were

presented including melting and solidi®cation in multi-

dimensions with more than one interface [5JM], 1D
phase ®eld models with adaptive grids [10JM], a mov-
ing boundary problem in a ®nite domain [11JM], and
evolution of ice over freezing winter leads in Arctic

waters [1JM].

14.2. Stefan problems

Studies included: a novel enthalpy formulation
applied to Stefan problems in various domains [15JM];

and imposition of an energy balance condition on a
phase change interface with thermal wave e�ect
[16JM].

14.3. Ice formation in porous materials

Work in this area included freezing in traditional
porous material freezing as well as in foods and bio-
logically relevant material (cryobiology). Studies on

traditional materials included: heat and mass transfer
in freezing and frozen peaty soils [23JM]; seasonal
¯uxes of water and heat in the active layer from spring
thaw to fall freeze-back in a permafrost site [20JM];

density e�ect on laminar water pipe ¯ow solidi®cation
[28JM]; eutectic freeze crystallization used in waste
water puri®cation [29JM]; and glass transition and

relaxation kinetics of polymers studied with DSC tech-
niques [24JM].
In food science investigations included: food freezing

and chilling behavior using an enthalpy based tech-
nique [17JM]; a review of thermal design calculations
for food freezing equipment [21JM]; experimental and

theoretical study of model food freezing [30JM]; and
simulation of ice recrystallization in ice cream during

storage [18JM]
Investigations in the cryobiology area included: in-

¯uence of anti-freeze proteins on the freezing of cell

suspensions [25JM]; freeze±thaw of bovine embryos in
the presence of propylene glycol and ethylene glycol
protective additives [22JM]; optimization of high press-

ure freezing for a new microbiopsy device [26JM];
assessment of the properties of pure water and solute
laden solutions at low temperatures and in the solid

phase [27JM]; in situ assessment of cell viability after
freezing [31JM]; and thermal analysis of a cryomicro-
scope due to heat spreading and contact resistance
[19JM].

14.4. Contact melting

Studies included: e�ects of vibration on ice contact
melting within rectangular enclosures [32JM]; e�ects of
transverse convection and s/l density di�erence on the

steady close-contact melting [33JM].

14.5. Melting and melt ¯ows

Experimental work in this area included: interactive
solutal and thermal Marangoni convection in a metal

melt during directional solidi®cation [34JM]; visualiza-
tion of melting and solidi®cation in convecting hypoeu-
tectic gallium alloy [35JM]; heat transfer, ¯uid ¯ow

and interface shapes in zone melt processing with in-
duction heating [39JM]; thermocapillary convection in
two-layer systems [41JM]; factors a�ecting solder

microdroplet deposition [48JM]; interface propagation
in the processing of metal matrix composites [36JM];
and continuous fractional crystallization on a moving
cooled belt [42JM].

Numerical studies in this area included: use of a
modi®ed control volume model to predict natural
convection dominated melting of pure metal [38JM];

a model of marangoni e�ects in electron beam melt-
ing [40JM]; modeling of micro-level volume expansion
during reactive melt in®ltration [43JM]; a moving grid

approach to modeling melt in phase change problems
[44JM]; simulation of the melting of a horizontal sub-
strate placed beneath a heavier liquid [45JM]; model-
ing of convective heat transfer in horizontal zone

melting [46JM]; a model of 3D laser heating including
moving heat source and phase change [49JM]; heat
and solute di�usion with a moving interface by BEM

[50JM]; and FEM analysis of heat and ¯uid ¯ow in
an electron-beam vaporization system for metals
[47JM].

In addition a hypothesis concerning the evolution of
the earth's mantle was proposed as caused by a plan-
etary collision. The impact is suggested to have formed
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a melt ocean of magma which ¯oated the mantle
[37JM].

14.6. Powders, ®lms, emulsions and particles in a melt

Experimental work in this area included: nickel alu-
minide intermetallices synthesis using a spray atomiza-
tion and deposition technique [55JM]; observation of

inclusion behavior in a steel melt by the advancing
melt/solid interface [57JM]; di�erential thermal analy-
sis DTA) study to determine thermal property changes

of mold powders used in continuous casting of steel
slabs [58JM]; thermal process in high velocity oxygen-
fuel (HVOF) spray coating on a copper substrate

[59JM]; melting and resolidi®cation of subcooled
mixed powder bed with moving heat source [60JM]
and heat transfer through source powder in sublima-
tion growth of SiC crystals [53JM].

Modeling work in this area included: modeling of
the melting of solid particles in an agitated molten
metal bath [51JM]; 3D simulation of dendritic grain

structures of gas-atomized Al±Cu alloy droplets
[52JM]; modeling of particle behavior of nanocrystal-
line Ni during high velocity oxy-fuel thermal spray

[54JM]; and free surface shape and temperature distri-
bution in liquid metal droplets produced in the TEM-
PUS electromagnetic levitation facility [56JM];

14.7. Crucible melts

A crucible melt numerical study of combustion in a

zinc ¯ash smelter was reported [61JM].

14.8. Glass melting and formation

Reports include: an FEM study of bouyant ¯ow of
an optically thick ¯uid representative of molten glass

[62JM] and evaluation of bubble removing perform-
ance in a glass furnace [63JM].

14.9. Welding

Welding work included: modeling of resistance weld-

ing of thermoplastic matrix composite lap shear speci-
mens [64JM, 65JM]; exothermically assisted shielded
metal arc welding [66JM]; globular transfer in gas
metal arc welding [69JM]; hot plate welding of poly-

propylene [72JM]; analysis of a weakly ionized plasma
arc between geometrically dissimilar electrodes [73JM];
thermal modeling of laser welding for titanium dental

restorations [74JM]; numerical dynamic analysis of a
moving GTA weld pool [68JM]; modeling of GMA
weld pools with consideration of droplet impact

[67JM]; analysis of pulsed current GTA weld pool heat
and ¯ow ®elds [70JM]; and an FEM analysis of dual-
beam laser welded tailored blanks [71JM].

14.10. Enclosures

Numerical work included: FVM and FEM simu-
lation of macrosegregation of an alloy in a rectangular
cavity [75JM]; natural-convection-dominated melting

inside heated rectangular cavities [76JM]; FEM model
for convection-dominated melting and solidi®cation in
a rectangular cavity [77JM]; and a FEM model of

melting of a pure PCM in a rectangular container
heated from below [78JM].
Other studies included: gas ¯ow analysis in melting

furnaces [80JM]; bifurcation and stability analyses for
a two-phase Rayleigh±Benard problem in a cavity
[81JM]; and an experimental study of melting heat
transfer in an enclosure with three discrete protruding

heat sources [79JM].

14.11. Nuclear reactors

A simulation of a fuel/coolant accident simulated by
experiments on hot melt injected into sodium was pre-

sented [82JM].

14.12. Energy storage

Modeling work included: simulation of a multi-layer
latent heat thermal energy storage system [83JM];

analysis of a latent heat thermal energy storage system
with enhanced heat conduction using ®ns [84JM]; cyc-
lic melting and freezing of an encapsulated PCM inte-
grated into a solar heat receiver [85JM]; exergy

analysis of latent heat storage systems with PCMs
[91JM]; convection based modeling of vertical cylindri-
cal storage unit for PCMs [87JM]; a numerical analysis

of the strati®cation properties of chilled water storage
tanks at the freezing point [93JM]; and a numerical
study of vibration on melting of an un®xed rectangular

PCM under variable gravity environment [92JM].
Other studies included: latent cold heat energy

storage by oil droplets [86JM]; natural convection

melting from a heated wall with vertically oriented ®ns
[88JM]; improvements of heat transfer in latent heat
thermal energy storage with embedded heat sources
[89JM]; thermal management of an avionics module

using s/l phase change materials [90JM]; and an exper-
imental and analytical phase change study in an energy
storage system [94JM].

14.13. Solidi®cation during casting

Modeling of dendritic structure of steel billets pro-
cessed by continuous casting was presented [95JM].

14.14. Mushy zone Ð dendritic growth

Modeling studies included: a numerical study of con-

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366282



vection±di�usion phase change problems in the mushy
region [96JM]; a continuum model of mass, heat and

momentum transport in multicomponent s/l phase
change [97JM]; modeling of dendritic tip temperature
under conditions of free growth (no gravity) [98JM];

simulation of dendritic growth in a shear ¯ow
[102JM]; re®ned solute di�usion model for columnar
dendritic alloy solidi®cation [103JM]; thermal model

for mushy zone formation in binary solutions [104JM];
and integral solutions of di�usion controlled dendrite
tip growth [101JM].

Additional studies investigated the concave casting
surface during mushy-zone solidi®cation [99JM] and
scaling behavior of 3D dendrites [100JM].

14.15. Metal solidi®cation

Modeling studies included: computational study of
planar solid±liquid interface stability during rapid
solidi®cation of binary metal alloys under laser treat-

ment [105JM]; FEM and experimental analysis of
compression holding in semi-solid forging [107JM];
numerical simulation of layer solidi®cation for
unsteady conditions in a eutectic binary ¯uid

[109JM]; numerical analysis of pulsed laser heating
for the deformation of metals [112JM]; numerical
analysis of semi-solid forming technology for light

metals in die casting; explicit interface tracking in
three dimensions on a ®xed grid during solidi®cation
[114JM]; numerical modeling of ductile iron solidi®ca-

tion [115JM]; heat and mass transfer in solidifying
binary alloy [116JM]; quanti®cation of quenching
thermal stresses and heat transfer [118JM]; evaluation

of solutal, thermal and ¯ow ®elds in unidirectional
alloy solidi®cation [122JM]; modeling the heat ¯ow to
an operating sirosmelt lance [123JM]; a mathematical
model for free surface problems with application to

solidi®cation [125JM]; the in¯uence of thermoelectric
and magnetohydrodynamic e�ects on solidi®cation
[126JM]; the computer modeling of microstructural

evolution and ®nal properties of C-MN-NB steels
[108JM].
Experimental studies included: melting and solidi®-

cation characteristics of solders using DSC [106JM];
interfacial instability and microstructural growth
during rapid solidi®cation in laser processing [111JM];
squeeze casting and hot/cold forging [113JM]; layer

merging during solidi®cation of the supereutectic
NH4Cl±H2O system [117JM]; rapidly solidi®ed 12Cr±
Mo±V stainless steel [120JM]; melting and resolidi®ca-

tion of a substrate in contact with a molten metal
[124JM]; gamma titanium aluminide alloy phase
change during supertransus heating [121JM]; stud-to-

plate laser braze studied [119JM]; and the in¯uence of
quenched-in clustering of vacancies in electron±phonon
coupling [110JM]

14.16. Crystal growth from melt

Experimental studies included: comparative study of

crystallization and orientation development in melt
spinning for polyole®n ®bers [130JM]; columnar
growth of melt-spun steel [135JM]; distribution of Sb

dopant in Ge single crystals grown by the ¯oating
zone technique in space [138JM]; direct contact heat
transfer in melt crystallization [139JM]; crystal for-

mation in amorphous metals after heavy ion bom-
bardment [156JM]; fragmentation of dendritic crystals
during solidi®cation of aqueous ammonium chloride

[146JM]; cooling and crystallization of hot melt ad-
hesives [131JM]; composition of MOVPE horizontal

reactor grown ternary alloys [155JM]; gallium
arsenide growth in a pancake and MOCVD reactor
[148JM]; convective e�ects during liquid encapsulated

crystal growth in a magnetic ®eld [145JM]; e�ect of
magnetic ®elds on heat ¯ow and interfaces in ¯oating
zone silicon crystal growth [140JM]; ¯oating zone

growth of large silicon crystals with radiation on dif-
fuse and specular surfaces [132JM]; radiation in sili-
con ¯oating zone crystal growth furnace with

specular re¯ection on concave surfaces [133JM];
thermo-¯ow structure during chemical vapor depo-
sition epitaxy [153JM]; and creation of vicinal facets

on the surface of epitaxially grown gallium arsenide
[127JM]. In addition, a geological study of crystalliza-
tion of the Skaergaard Layered Series geography was

presented [152JM].
Modeling studies included: dopant segregation in

vertical zone-melting crystal growth [142JM]; theoreti-
cal analysis of the micro-pulling-down process for ®ber
crystal growth [143JM]; dynamic simulation of vertical

zone-melting crystal growth [144JM]; a model of thin-
®lament melt spinning [136JM]; transient growth
analysis of LE±VGF growth of compound semicon-

ductors [147JM]; and a computational study of smear-
induced crystallization in polymers [149JM].
Additional work on Bridgman and Czochralski crys-

tal growth was also presented. Bridgman growth stu-
dies included: temperature distribution and solid±
liquid interface shape in vertical Bridgman crystal

growth of semi-transparent materials [128JM]; bifur-
cation and stability analyses of horizontal Bridgman
crystal growth of a low Pr material [141JM]; exper-

imental determination and numerical modeling of s/l
interface shapes for vertical Bridgman grown antino-

mide crystals [129JM]; local and global simulations of
Bridgman and liquid-encapsulated CZ crystal growth
[158JM]; and a review of heat and mass transfer

during crystal growth Ð either CZ or Bridgman
[137JM].
Studies on Czochralski crystal growth included:

single CZ crystal growth of silicon with respect to
specular and di�use surfaces [134JM]; morphology
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and heat transfer in sillenite compounds grown by
CZ method [150JM]; interface approximations in

multi-domain simulations of CZ bulk ¯ows [151JM];
¯ow and temperature in molten silicon during CZ
crystal growth in cusp magnetic ®eld [154JM]; and di-

ameter controlled CZ growth of silicon crystals
[157JM].

14.17. Casting

Experimental work included: radiative heat transfer
through mold ¯ux ®lm during initial solidi®cation in
continuous casting of steel [163JM]; measurement of
thermal resistance at the interface between mold ¯ux

®lm and mold [164JM]; heat transfer across mold ¯ux
®lm during initial solidi®cation in continuous casting
of steel [165JM]; experimental studies of heat transfer

and solidi®cation pertinent to strip casting [176JM];
roll strip interfacial heat ¯uxes and e�ect on micro-
structure in twin-roll casting of steels [178JM]; e�ects

around the immersion nozzle in billet continuous cast-
ing mold [183JM]; and thermal stress during vacuum
arc remelting and mold casting of ingots [160JM]. In
addition, double-gated, modulated-pressure injection

molding was reported by [184JM].
Modeling studies included: shape deposition manu-

facturing with microcasting using metal droplet

deposition [161JM]; numerical step type technique
for determining interfacial condition in die-casting
[159JM]; a FEM formulation for solving transient

multidimensional phase-change problems [162JM];
mathematical and physical modeling of steel ¯ow and
solidi®cation in twin-roll/horizontal belt thin-strip cast-

ing machines [166JM]; simulation of microporosity for-
mation in modi®ed and unmodi®ed A356 alloy
castings [167JM]; modeling of transient ¯ow phenom-
ena in continuous casting of steel [168JM]; numerical

modeling of heat transfer and ¯uid ¯ow during casting
[169JM]; numerical investigation of macrosegregation
during thin strip casting of steel [170JM]; modeling of

heat transfer between an iron casting and a metallic
mold [171JM]; and a 3D model of continuous beam
blank casting [172JM]; interfacial heat transfer during

solidi®cation and its use in design of optimal feeding
of castings [173JM]; prediction of interfacial contact
conductance of investment cast alloy [174JM]; 3D nu-
merical prediction of turbulent ¯ow, heat transfer and

solidi®cation in a continuous slab caster for steel
[175JM]; computational ¯uid dynamics applied to
twin-roll casting [177JM]; characterization of the mold

metal interface e�ects in metal casting [179JM]; analy-
sis of mold wear during continuous casting [180JM]; a
mathematical study of EMBR ruler on the continuous

casting process [181JM]; and external mold surface
heat transfer applied to metal-matrix composite casting
[182JM].

14.18. Splat cooling

Studies included: deformation and solidi®cation of a
droplet impinging on a ¯at surface [185JM]; and
impact and solidi®cation of till droplets on a steel

plate [186JM].

15. Radiative heat transfer

The papers below are divided into subcategories,
which focus on the di�erent impacts of radiation.
Papers describing the development or application of

models dominate the literature on radiative heat trans-
fer. Papers focusing on the new numerical methods
themselves are reviewed in the numerical methods sec-

tion under subcategory radiation.

15.1. In¯uence of geometry

The calculation of view factors for di�erent geome-
tries continues to be of interest. However, compared to
previous years fewer publications addressed this topic.
Bazin et al. [3K] use a view-factor method to study

heat transfer through X-rays in heavy-ion fusion. A
semianalytical algorithm for calculating di�use plane
view factors is presented in [16K]. Nunes and Naraghi

[21K] use a discrete exchange factor method to analyze
transfer in axisymmetric enclosures. Monte Carlo
methods are also used for tracking radiative paths

[26K, 27K]. Jung et al. [12K] determine view factors
for a crystal growth furnace.
This year, the discrete ordinate method is frequently

employed to model radiative heat transfer in three-
dimensional geometries. Nonorthogonal grids for com-
plex 3D-geometries are used in [23K±25K]. Rectangu-
lar enclosures are modeled in [22K, 15K]. Jessee et al.

[10K] use a discrete ordinate scheme with an adaptive
grid re®nement algorithm to solve the radiative trans-
port equation. Irregular 3D-systems are modeled in

[14K]. A discussion of the discrete ordinate method for
participating media is given in [30K].
A comparison of discrete transfer, discrete ordinate

and ®nite volume methods for 2D-systems is presented
by Coelho et al.[6K]. The discrete ordinate and the
®nite volume method turn out to be the most economi-
cal ones. A ®nite volume method for three- dimen-

sional enclosures is used in [1K]. Another method used
to describe radiative transfer in complex geometries is
based on variational principles [9K]. Cumber and Beeri

[7K] discuss a strategy for parallelization of discrete
transfer models. The ®nite volume method is used for
axisymmetric enclosures [13K, 20K], and in complex

geometries using unstructured meshes [19K]. Miller
uses a Monte Carlo method for a random medium
with plane geometry [17K]. The same author also
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describes a stochastic construction method for Feyn-
man path integral representation of Greens functions

[18K]. A second order ®nite di�erence scheme is used
to model multidimensional radiation problems in the
di�usion limit [8K]. Stasiek [28K] uses a transfer

con®guration factor method to model radiative trans-
fer in open enclosures. A wavelet basic function
method is used for the modeling of a one-dimensional

equilibrium problem [2K].
The geometry of the system also plays an important

role in the radiative heat transfer in catalytic monoliths

[4K], in ultra-high temperature heat exchangers [11K],
and in one-dimensional gas enclosures with re¯ective
surfaces [5K]. The e�ect of the location of heating
tubes in greenhouses is studied in [29K].

15.2. Participating media

Papers in this category can be divided into those,
which focus on emission and absorption properties of

the media, and those, which emphasize scattering.
This year, fewer papers consider radiative transfer in

molecular gases. A macrostatistical model to describe
the vibrational band spectrum of CO2 and H2O is used

by Surzhikov [59K, 60K]. Isothermal water and CO2/
H2O/N2 mixtures are considered in a three-dimensional
radiation analysis in [52K]. Liu et al. [51K] also pre-

sent a new gray-band approximation which utilizes a
local absorption coe�cient. Gokcen et al. [43K] pre-
sent simulations of emission spectra from shock-layer

¯ows in an arcjet facility. Higano et al. [45K] discuss
the heat transfer in large toroidal fusion plasmas by
approximating the plasma as a gray, participating

medium.
A good number of papers focus on the in¯uence of

scattering, absorption, emission, and re¯ection. Scat-
tering and re¯ection are important in coating layers

containing pigments [32K], since high re¯ectivities in
the infrared can in¯uence the combustibility of ma-
terials. Absorption is important for radiative heat

transfer in suspensions [35K], in translucent thermal
barrier coatings [55K], and in semitransparent molten
glass jets [56K]. Vitkin and Ivanov [63K] discuss the

heat transfer in a light-scattering and absorbing slab.
The e�ects of scattering are emphasized in [54K, 61K].
Emission, absorption and scattering are considered for
multidimensional geometries [53K], for media bounded

by gray, di�usely re¯ecting and emitting enclosures
[58K], for media between plane and concentric, spheri-
cal boundaries [64K], and for ¯uoride salt phase

change media bounded by concentric cylinders [65K].
The unsteady cooling of solid spheres in radiatively
active media is discussed in [34K].

Absorption and scattering are also pivotal for the
radiative transfer in ®brous media as pointed out in
[48K, 39K]. The radiative properties of ®ber-reinforced

aerogels are studied by Cunnington et al. [38K]. The
in¯uence of using Planck mean properties compared to

spectral and ¯ux-weighted properties when modeling
radiative transfer in ®brous media is discussed in
[31K]. The properties of participating media in com-

bustion, ¯ames and ®res have attracted particular
interest. Carvalho and Farias model heat transfer in
radiating and combusting systems focusing on the

radiative properties of combustion products [33K]. The
radiative properties of the combustion products are im-
portant in heavy fuel oil combustion [62K], compart-

ment ®res [42K], and in radiative transfer in ceramic-
coated furnaces [47K]. The radiative properties of the
fuel are emphasized in the study of radiation reabsorp-
tion in CH4/CO2/air and CH4/CO2/O2 premixed ¯ames

[44K], and of gas ®red furnaces [50K]. Soot also has a
strong in¯uence on the radiative transfer in combus-
tion and ®res [46K, 40K, 41K, 36K, 57K]. Cumber et

al. [37K] use a wide band radiation model for non-
homogeneous combustion systems. Liakos et al. [49K]
study radiative transfer in pulverized coal char com-

bustion.

15.3. Radiation combined with convection, conduction or

mass transfer

Within the papers on combined heat transfer modes

most papers focus on two modes. A large number of
publications address radiative heat transfer combined
with convection.

Viskanta [98K] gives an overview of convection and
radiation in high temperature gas ¯ows. Radiation and
natural convection are important for the heating el-

ement con®guration of tunnel ovens [77K]. The combi-
nation of natural convection and radiative heat
transfer also plays an important role for the scaling of
organic light-emitting ¯at-panel displays [97K], and for

large-eddy simulations of contrails [74K]. Numerical
models for natural convection±radiation heat transfer
are presented for arbitrarily shaped enclosures [94K],

partitioned cavities [92K], the ¯ow of optically dense
¯uids along cylinders with elliptic cross section [82K],
and large vertical channels with asymmetric heating

[73K]. Bril et al. [71K] present similarity laws for heat
radiation from turbulent buoyant jets. The combined
heat transfer upon turbulent ¯ow of a high-tempera-
ture radiating gas past a thin semitransparent plate is

studied in [95K]. Breitholtz and Leckner study the heat
balance of a circulating ¯uidized bed furnace [70K].
Radiative transfer and forced convection for air in

channels with o�set plates is studied by Ali et al.
[66K]. A computational model for heat transfer in very
high temperature gas cooled reactors is presented in

[68K]. Lee and Viskanta [88K] study the quenching of
¯at glass by impinging air jets. An infrared re¯ow
oven with convection fan is considered in [84K].
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Forced convection±radiation heat transfer is also con-
sidered important for turbulent ¯ows of participating

gases through ducts [79K], nonhomogeneous rectangu-
lar pipes [80K], and in chemical vapor deposition reac-
tors [76K]. Fewer publications deal with the combined

e�ects of radiation and conduction. Several papers
deal with new approaches to the modeling of combined
radiation and conduction. Andre and Degiovanni

[67K] model a semitransparent layer by a matrix trans-
fer function to solve the one-dimensional transient
energy transfer by conduction and radiation. The inte-

gro-di�erential equation modeling in conducting,
radiating and semi-transparent materials is described
in [87K]. Banoczi and Kelley use a multilevel algor-
ithm to solve the nonlinear system of equations for

radiation±conduction transfer [69K]. Conduction±radi-
ation in cylindrical media is studied in [86K], and in
general axisymmetric media in [99K]. Conductive and

radiative heat transfer are also important in glass man-
ufacturing [89K, 96K, 85K]. Chen and Lin [72K] study
heat and mass transfer in polymer solutions exposed to

intermittent infrared heating and air¯ow.
Several papers consider combined convection, con-

duction, and radiation. Hossain and Rees [83K] study

heat transfer from a vertical cylinder. Combined con-
duction±convection±radiation also plays a role in the
heat transfer from residential attics [91K], heat transfer
between insulated cables suspended in air [90K], for

the ¯ame shape and quenching in ducts [81K], for the
modeling of lighting/HVAC interaction in enclosures
[75K], and for the heating of continuously moving

loads in industrial radiant ovens [78K]. A spray-cool-
ing problem for hot surfaces is considered in [93K].

15.4. Intensely irradiated materials

Only few papers this year deal with intensely irra-

diated materials. Asta®eva and Phrishivalko study the
heating of solid aerosol particles exposed to intense
optical radiation [100K]. Laser-driven shock waves are

analyzed by Steiner et al. [101K] including radiative
and conductive heat transfer.

15.5. Experimental methods and properties

Several papers are dedicated to the development of
new experimental methods. High-Tc superconductors

are considered for the design of far-infrared radiation
modulators [109K], and for radiation detectors [110K,
106K]. A laser-¯ash method is used to measure the

thermal di�usivity of semitransparent materials [107K].
The e�ect of Stefan ¯ow on the characteristics of
stable (burning) and critical (ignition and extinction)

regimes of heat and mass transfer between a carbon
particle and air is established in [105K]. Blackbody
radiation of single spherical particles has been used to

derive the surface temperature [104K]. Blackwell et al.
[103K] report measurements of shock-layer vibrational

populations and temperatures in nitrogen arcjets. A
high-power, radiatively cooled hydrogen arcjet thruster
is studied in [102K]. Shen et al. [108K] report measure-

ments of absolute infrared intensities in thermal wave
resonant cavities.

16. Numerical methods

The development and application of numerical

methods continues to be an area of intense research ac-
tivity. Newer procedures are developed for solving the
partial di�erential equations involving heat conduction
and ¯uid ¯ow. Also, numerical methods are applied to

a variety of practical problems. In this review, the
papers that focus on the application of numerical
methods to speci®c physical situations are included in

the appropriate application category. The papers that
describe the details of a numerical method are refer-
enced in this section.

16.1. Heat conduction (direct problems)

A network model has been developed for heat con-
duction with varying thermal properties [6N]. A mesh-

free method based on the method of fundamental sol-
utions is described in [2N]. For the problem of obtain-
ing iterative solutions of strongly nonlinear equations,
an auto-adjustable damping method is proposed [1N].

Radial basis functions are used to create a mesh-free
method for heat conduction [15N]. A ®nite-volume
method is described for moving-boundary problems

[16N]. The non-Fourier heat conduction problem is
addressed in [13N, 9N]. A harmonic-sine procedure is
described for heat conduction problems with singular-

ities [11N]. A variational approach is presented for
nonlinear heat conduction problems with random par-
ameters [7N]. Reference [10N] shows the incorporation

of anisotropic conduction using unstructured meshes.
Nonlinear heat conduction in a system of di�erent ma-
terials is treated [3N]. The di�use approximation
method is compared with a control volume method

[12N]. Boundary element methods for heat conduction
have been presented in [14N, 8N, 4N, 5N].

16.2. Heat conduction (inverse problems)

Inverse problems for the piezoelectric phenomenon
have been considered in [20N, 21N]. Parabolic and
hyperbolic inverse heat conduction are treated in

[17N±19N]. An inverse geometry heat conduction
problem is addressed in [23N, 24N]. The method of
mode reduction is used for solving inverse heat con-
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duction problems [25N]. A boundary element method
is used for solving an inverse problem [22N].

16.3. Phase change

A numerical scheme is described for the Stefan
problem [26N]. A moving-boundary technique is used

for solid±liquid phase change [27N]. The dynamic
behaviour of a melting sample is analyzed in [29N].
The solidi®cation of binary alloys is addressed via an

inverse domain problem [28N].

16.4. Treatment of convection and di�usion

A higher-order convection±di�usion scheme for

thermally driven ¯ows is described [31N]. A multi®eld
model for advection-di�usion is presented in [34N].
Adaptive very-high-resolution schemes are proposed

[32N, 33N]. Multilevel solution-adaptive strategies are
examined on selected test problems [30N]. Precondi-
tioning techniques for convection±di�usion problems
are investigated [35N].

16.5. Solution of ¯ow equations

A number of variations of the SIMPLE algorithm
have been proposed and examined. A comparison

of SIMPLE and PISO algorithms is described [36N].
Various pressure-based procedures are tested for the
shock-tube problem [38N]. Convergence criteria for

SIMPLE-based algorithms are examined [40N]. A
pressure-based procedure is applied to duct ¯ows
[55N]. A multigrid algorithm is used in combination

with the SIMPLE procedure [56N]. Reference [52N]
describes the treatment of pressure boundary con-
ditions for the ¯ow equations. A SIMPLE-like algor-
ithm on colocated grids is described in [54N]. A

variant of SIMPLE for treating buoyancy-driven ¯ows
is presented [50N, 51N].
A ®nite analytic method is reviewed [44N] and

applied to the ¯ow equations [37N]. An adaptive
®nite element method is used for turbulent forced
convection [39N]. A ®nite-element multigrid method

is described for ¯ow problems [41N, 42N]. Reference
[49N] proposes techniques for exploiting the ¯exibility
of unstructured grids. Arti®cial compressibility is
used for computing ¯ows with free surfaces [48N]. A

diagonal Cartesian method is proposed for incom-
pressible ¯ows [43N]. A spectral domain decompo-
sition technique is described for ¯ow equations

[45N].
A strongly coupled technique is used for non-New-

tonian ¯ow [53N]. A technique is proposed for the

treatment of the singularity at the radial center in
cylindrical coordinates [47N]. Benchmark solutions are
presented for unsteady ¯ow problems [46N].

17. Properties

In contrast with the investigations of the several pre-
ceding years interest has shifted to the characteristics
of modern materials and their applications: composite

systems, thin ®lms and contact resistance.

17.1. Di�usion

Species transport by di�usion is measured in a
liquid (5 mol% Sr-substituted LaPO4) in the course of

investigating the electrical conductivity. Critical con-
stants of mass di�usion through a membrane are
found to be related to a critical di�usion time marking

the conversion between transient and steady-state
conditions of the process [1P, 7P]. Analytical e�orts
determine the role of species di�usion in a multi com-

ponent, reacting, laminar ¯ow system involving heat
and mass transfer; model the mass-transfer Ð con-
trolled spherical bubble growth in a quiescent liquid,
the dissolution of alumina in cryolite at elevated tem-

peratures, and the behavior of an isolated ¯uid drop
of a single compound immersed in another compound
in ®nite, quiescent surroundings at supercritical con-

ditions. The phenomenological di�usion equation for
solute atoms under a temperature gradient is examined
and a new error-estimating parameter in di�usion

modeling proposed for certain engineering problems
[2P±6P, 8P].

17.2. Thermal conductivity

Experimental measurements provide the e�ective

thermal conductivity for beds of CaCl2 reactive par-
ticles in the course of gas±solid reactions. For the mag-
nesium±magnesium-hydride±hydrogen (Mg±MgH2±
H2) packed bed system a new technique measures the

e�ective thermal conductivity. Because Fe±Cr alloys
with more than 30% (mass) chromium are potentially
useful in many industrial applications, Mechanical and

Physical properties were investigated for alloy systems
in which Fe mass percent ranges from 50 to 70%
(mass). Other works determine the thermal di�usivity

of levitated, oblate, spheroidal samples by the ¯ash
method, model the thermal di�usion in a temperature
Ð modulated di�erential scanning calorimeter and in-
vestigate the combined conductive and non-gray radia-

tive heat transfer of open cell polyurethane (PU) foam
[15P, 16P, 9P, 18P, 10P, 20P]. Using existing data the
dependency of physical properties on temperature and

composition for 11 alloys of the Al±M6 system are
generalized to represent the full range of system beha-
vior. Other solid phase systems are studied for calcu-

lating heat ¯ow under inhomogeneous conditions and
simply modeled for determining thermal properties and
heat transfer coe�cients when being refrigerated in

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366 287



any medium. A semitheoretical method is proposed for
predicting liquid thermal conductivity and numerical

methods for estimating temperature-dependent thermal
conductivity and heat capacity using internal tempera-
ture measurements [19P, 14P, 13P, 17P, 11P, 12P].

17.3. Heat capacity

Calorimetric experiments yield data for n-C-8-, C-9-,
and C-10-dimethylphosphine oxides, putidaredoxin
(Pdx), an iron±sulphur protein containing a 2Fe±2S

cluster, and a procedure for separating the enthalpic
e�ect and the heat capacity. Additional works report
values for lithium bis(tri¯uoromethylsulfone)imide

(litfsi) (a promising electrolyte for high-energy lithium
batteries), partial molar heat capacities for ®ve linear
alcohols and ®ve N-substituted amides, and liquid
ammonia [21P±23P, 26P±28P]. Analysis yields infor-

mation about liquid selenium and a theoretical one-
dimensional liquid of the Hubbard type [24P, 25P].

17.4. Composite materials

The behavior of the alloy, 2124 Al, reinforced by 20

percent (volume) silicon carbide particulates, is
observed for creep at various temperatures and applied
stresses. Using a thermal pulse technique, thermal dif-

fusion through aluminum oxide/molybdenum multi-
layers is studied. Analytical works consider: two-
dimensional, transient heat transfer in a multilayered
system, composite materials with parallelepiped in-

clusions, and model rubberized materials undergoing
thermal treatment [29P±33P].

17.5. Contact resistance

Adhesion and homogeneity of thin ®lms are related

closely to the subsurface physical and chemical proper-
ties. Interface thermal resistance and subsurface e�u-
sivity of submicron metallic ®lms on substrates are

determined simultaneously by experiment. Analytical
investigations include: An analysis of the thermal re-
sistance between two semi-in®nite solids in contact due
to the interstitial medium presence; the application of

statistical mechanics to study thermal contact conduc-
tance; the success of existing analytical models in pre-
dicting the thermal contact conductance for aluminum/

aluminum and aluminum/stainless-steel surfaces in
contact; the e�cacy of a modi®ed thermal conductivity
relation when modeling heat transfer through micron-

sized caps in areas such as insulation and contact
regions [34P±38P].

17.6. Thin ®lms/coatings

There is considerable activity in this sector. Ther-

mal waves are used to study the thermal properties of
hard coatings and the heat transfer between the coat-

ing and piece. Joule heating of poly-silicon micro-
structures has scant in¯uence on the Young's
modulus of the microstructure. It is also used to

determine the thermal conductivity of the passive, low
dielectric-constant layers employed in integrated cir-
cuits (e.g. polymers and porous oxides) without

knowledge of the layer heat capacity. Other papers
describe the use of laser-¯ash method to measure the
normal di�usivity of ®lms (e.g., diamond) with thick-

nesses in the range 200±700 mm, a technique for
measuring the lateral thermal conduction in a silicon
layer, and the e�ects induced by electrical current
(DC) on the adherence of thin gold ®lms to the sub-

strate [44P, 49P, 47P, 39P±41P].
Analytical e�orts focus on: the three-dimensional

modeling of heat ¯ow into substrate with temperature

dependent thermal conductivity; the e�ective thermal
conductivity of a thin, randomly oriented, composite
material; the prediction of thermal boundary resistance

in thin-®lm, high thermal conductivity, superconduc-
tors; and the minimum thermal conductivity of thin-
®lm materials [48P, 45P, 46P, 42P, 43P].

17.7. Transport properties

The ¯ash method measures heat capacity, thermal
conductivity, and thermal di�usivity for polycrystal-
line ZnIn2Se4 300±600 K. Simple formulas (based on
the latest, tabulated, experimental data) for liquid

water (0±1508C) allow the full range of thermodynamic
and transport properties to be calculated. Analytical
studies: describe the use of genetic algorithms to de-

sign experiments and develop estimates for thermal
properties; study the transport properties of multi-
component, reacting, gas mixtures using kinetic theory;

determine transport coe�cients and equation of state
of supercritical ¯uids and calculate transport cross-
sections and collision integrals for interactions of

hydrogen atoms and diatomic molecules [50P±56P].

17.8. Viscosity

Measurement of the viscosity of a dilute polymer
solution at a reference temperature, before and after
heating, allows the thermal degradation of the non-

Newtonian viscosity to be assessed. A dispersion of n-
alkanes in water, proposed for energy storage and
transport, is studied for viscosity (and heat capacity)

behavior. Analytical works treat: the coupled ¯ow and
heat transfer in circular Couvette ¯ow with tempera-
ture dependent viscosity and thermal conductivity; the

in¯uence of the thermo mechanical coupling, called the
Piston e�ect, on heat transfer near the critical point;
the e�ect of lubricant viscosity variation within the
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®lm on journal bearing performance; and the role of
thermal history and viscosity for modeling the resin

transfer moulding process [57P±63P].

17.9. Miscellaneous

Thermal properties are reported for a number of
special systems: chicken-drum muscle over a wide

range of muscle moisture content and temperature
(Food Science); pressure-composition isotherms of
high and low temperature metal hydrides; and heat
transfer in the vicinity of an active volcano (New Zeal-

and) [64P, 65P, 66P].

18. Heat transfer applications Ð heat exchangers and

heat pipes

Heat exchangers and heat pipes and marked activity
across a broad front of heat transfer applications

characterize this section, particularly e�orts made to
enhance the heat transfer process by various tech-
niques.

18.1. Compact and micro-heat exchangers

By experiment and numerical modeling investigators

consider: the performance of a new swirl ¯ow duct
suitable for compact heat exchangers; the development
of a CO2 exchanger for automotive use and a minia-

ture glass tube exchanger for low temperature service
using nitrogen. Micro-heat exchangers are examined
for future 3D electronics packaging systems, low

hydraulic losses, forced liquid convection in rectangu-
lar channels, and the thermal resistance of ¯at plate
designs [1Q±7Q].

18.2. Design

Contemporary developments in the thermal design

(correlations, procedures and sizing) of ®nned-tube
heat exchangers and the role of nonuniform overall
heat transfer coe�cients and ¯ow maldistribution are

examined. Cross¯ow exchangers are considered for
indirect evaporative cooling, the e�ect of longitudi-
nal wall conduction and minimization of entropy
generation. Other works re-examine the Reynolds±

Prandtl analogy between heat and momentum trans-
fer in turbulent ¯ow, analyze the relationship of
temperature di�erences in heat transformation

devices, and test an extended temperature oscillation
measurement technique for determining the heat
transfer coe�cient. Analytical e�orts treat hot-wall

condenser and evaporate con®gurations in refriger-
ation appliances and a new condenser tube arrange-
ment [8Q±19Q].

18.3. Direct contact heat exchangers

For gas±solid particle heat transfer: heat transfer
coe�cients have been measured and analyzed for radi-
ation e�ects, and particle growth during chemical reac-

tion. The e�ciency of a direct-contact metal recovery
condenser is modelled. For water sprays the par-
ameters important in industrial spray cooling of a

heated surface are observed and the evaporative cool-
ing of air measured and simulated. Cooling towers are
modeled and analyzed and for evaporators and absor-

bers, analytical works consider compact bubble absor-
ber design, the evaporation process in a bubble
column, and falling ®lms in vertical tube evaporators
[20Q±30Q].

18.4. Enhancement

An impressively large body of work explores, exper-
imentally and numerically, geometrical, ¯ow, and sur-

face treatment approaches to promoting heat transfer.
The experimental studies consider the use of louvered
®ns and hydrophilic coating to improve exchanger heat
transfer; the e�ect of narrow, twisted, thin metallic

strips, grooves in turn sections, triangular and pin ®n
arrays, corrugated±undulated exchanger surfaces and
o�set strip-®n exchangers. Other works study the ben-

e®t of elliptical pin ®ns in rectangular and circular
ducts, develop experiment-based correlations for round
tube and plate ®nned exchangers (28 exchanger

samples tested), and examine the role of humidity in
exchanger performance. Fin usage in a circulating
¯uidized bed and rectangular ®n performance in free

convection are also reported [31Q, 32Q, 35Q, 40Q,
41Q, 53Q, 54Q, 56Q, 61Q, 63Q, 64Q, 66Q±70Q,
72Q].
Another group of papers investigate speci®c systems

of heat transfer enhancement techniques: swirl
chambers and turbine blade cooling, roughened tube
bundles, perforated ba�es, air ¯ow in contemporary

compact exchangers (a review), rule of binary gas mix-
tures, and the in¯uence of turbulence and ¯ow rate
variation. Also considered are mass transfer in a falling

®lm absorber (L1Br±H2O absorbers), use of vertical
pinned plates in communication equipment, and manu-
facturing technology for plate-®ns or pin-®ns with
extremely narrow pin pitch [34Q, 42Q±45Q, 50Q, 52Q,

55Q, 57Q, 59Q, 65Q].
Studies employing numerical analysis or modeling

consider: laminar and mixed convective laminar ¯ow

in horizontal, internally ®nned tubes, laminar natural
convection in enclosures with ®ns on active wall, and
exchanger performance with fully Ð and partially Ð

wet ®n assembly. For ®nned oval tube, vortex gener-
ation is analyzed as are optimum dimensions for con-
tinuous plate ®n with various tube arrays and forced
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convection Ð radiation heat transfer in the entrance
region of internally ®nned tubes. Studies on louvered

®n arrays in compact heat exchangers, transient heat
transfer in annular ®ns and second-law analysis on
wavy plate ®n-and-tube exchangers conclude the ana-

lytical studies or enhancement [33Q, 36Q±39Q, 46Q±
51Q, 58Q, 60Q, 62Q, 71Q].

18.5. Fouling Ð surface e�ects

Heat exchanger performance depends on the main-
tenance of clean surfaces. E�orts center on under-

standing the mechanism of fouling, preventive
strategies, and remedies. Speci®c experiments consider
the gravity e�ect on particle deposition on smooth

surface, calcium carbonate (CaCO3) scaling mechan-
ism and kinetics, the fouling phenomena over a
single tube in gas ¯ow and the e�ect of thermophor-
esis on particle deposition (a simulation). Bacterial

bio®lms, their structure and properties, are reviewed
and the use of biocides tested. Other approaches use
wood pulp ®bers, chemical cleaning (sugar re®ning),

electronic anti-fouling technology, and study the
e�ect of fouling on temperature measurement. Where
fouling of surfaces is unavoidable design and opti-

mum performance attempt to manage the problem.
Thus plate exchangers in automotive use are
reviewed for corrosion failures, frost growth on cool-

ing surfaces modeled, the milk fouling of heat
exchangers modeled are simulated, and an expert
system devised for detecting fouling, optimum oper-
ating conditions and schedules predicted through a

combination of fundamental studies, laboratory and
plant measurements combined with models of the
actual heat transfer process [73Q±92Q]

18.6. Mathematical modeling, optimization

Increasingly, mathematical models are developed to

achieve optimum performance of heat exchangers. The
MINLP model is applied to heat exchanger networks,
one version allows the designer to specify beforehand

desired topology features as design targets. Additional
works solve the problem of maximizing mechanical
power derived from a hot single-phase stream when
total heat transfer area is ®xed, use ®nite element simu-

lation of transient laminar ¯ow heat transfer for an in-
line tube bank, and present a thermodynamic
approach to a plate heat exchanger with a dispersive

wave and the synthesis of optimal thermal systems.
Other e�orts model the heat and mass transfer of a
ground heat exchanger, the cooling and dehumidi®ca-

tion of air by a parallel, falling desiccant ®lm, and the
transverse heat transfer in thermoacoustics [93Q±
102Q].

18.7. Performance, factors a�ecting

The works here cited examine the in¯uence of cer-
tain factors on heat exchanger performance. Exper-
imental works consider: ¯ow-inducted vibrations for a

high-temperature gas-gas exchanger with helically
coiled tube bundles; nonplanarity (torsion) in¯uence
on convective heat transfer and friction loss for helical

ducts of rectangular cross section; rotating drum heat
exchanger (RDHE); oscillating ¯ow e�ect on local
heat transfer in a channel; and variable area heat

exchangers. Analytical works focus on: countercurrent
heat-transfer systems with three streams, perfect mix-
ing and plug-¯ow conditions; thermoeconomic factors
in design and rating of two-phase exchangers; radial

®n assembly e�ciency under dehumidifying conditions,
and the development of mixed convection in a coiled
heat exchanger. Additional e�orts treat: falling-®lm

NH3±H2O generators and absorbers; sub-slab heat
exchanger for geothermal heat pumps; air conditioning
coil performance prediction; thermoelastic stability of

duplex heat exchanger tubes; and heat exchanger per-
formance comparison for air-conditioning cycles using
R-22 or CO2 [103Q±117Q].

18.8. Reactors

Predominantly, investigations reported are numerical
rather than experimental. Among the latter works
there are papers on annular ®nned pyrolysers and their
merit in promoting clean combustion of biomass ma-

terials, a calorimetric scheme for adjusting the mass of
culture ¯uid in a bioreactor, the use of a multi-layer,
packed bed, reactor in citric acid production, and a

trickle bed reactor for hydrogenation of 2,4-dinitro-
toluene. Other works consider temperature trajectories
for well-mixed adsorptive reactors; the simulation of a

full-scale pressurized bed combustor using pilot plant
data; `runaway' limits for adiabatic, packed-bed, cata-
lytic reactors; and gas±solid, two-phase turbulent ¯ow

in ¯uid catalytic cracking riser reactors. The polymeriz-
ing reactor heat transfer for material (ethylene and
methyl methacrylate) production is noted as are works
on the modeling of reactors for photocatalytic oxi-

dation of air contaminants and the passive residual
heat removal in a natural convection heat exchanger
for a nuclear reactor. Design tools and design par-

ameter estimators are described as well as the modeling
of catalytic processes [118Q±134Q].

18.9. Power and reversed cycles

The in¯uence of heat exchanger characteristics on

power and reversed cycle performance is analyzed in a
number of studies. The closed Brayton cycle thermal
e�ciency is considered in one instance; in other cases
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thermal resistances and regenerative losses are exam-
ined for their in¯uence on the performance of a mag-

netic Ericsson refrigeration cycle; and an air
refrigeration cycle, and a model proposed to predict
the performance of alternative refrigerants in vapor

compression refrigeration/heat pump systems. The
absorption refrigeration cycle, with losses, is analyzed
for optimum performance and serves as a model to

analyze a absorption heat transformer, and in another
study a mathematical model is developed to predict
performance of a vapor compression/liquid desiccant

hybrid cooling and dehumidi®cation absorber. The
absorption process is employed in a number of ways:
internally-cooled liquid desiccants cool and dehumi-
dify, a hybrid liquid desiccant integrates evaporative

cooling to achieve nearly isothermal operation, and
non-absorbable gas presence in a falling ®lm absorber
in¯uences chiller performance. A group of papers treat

matters related to his section: matrix heat exchangers
and energy recovery from liquid hydrogen, multi-stage
¯ash desalination, regenerative monolithic rotor de-

humidi®er used for a absorption cooling, evaporative
cooling of a falling water ®lm on horizontal tubes,
developing ¯ow on heat transfer in laminar, oscillating

pipe ¯ow, and laminar ¯ow and strati®ed chilled-water
storage [135Q±152Q].

18.10. Shell and tube

Experimental investigations of local heat transfer
coe�cients on the outer surface of staggered tubes and

in-line arrangement are accompanied by mass transfer
measurements and the application of the analogy
between heat and mass transfer. The e�ect of ba�e

spaging and leakage on pressure drop and local heat
transfer are also observed. Fluid ¯ow and heat transfer
have been simulated using the distributed resistance

concept. Inverting classical design, i.e. primary water
¯ow in the shell side, secondary water in the tube bun-
dle, reduces the collective dose to operators inside the

exchanger channel head. A review article summarizes
developments in conventional shell-and-tube and com-
pact heat exchangers [153Q±162Q].

18.11. Thermosyphons (heat pipes)

Research on micro heat pipes includes the analysis

of minimum meniscus radius and capillary heat trans-
port limit and the re-evaluation of maximum heat
transport capacity, as modeled by Cotter, in the light

of current experimental data. Micro heat pipes pro-
cessed as an integral part of semiconductor devices are
also examined as an alternative to heat spreaders.

Experiments continue to explore the variety or appli-
cations of heat pipes: horizontal mantle exchangers in
thermosyphon solar water heaters; heat pipes applied

to turbine cooling in aircraft propulsion; liquid metal
heat pipe performance during space shuttle ¯ight and

possible application to fusion processes; and rotating
heat pipes using water and methanol. Additional
works tested air-to-air exchangers according to HVAC

guidelines and design methodology, observed the
e�ects of transverse acceleration-induced body forces
on the capillary limit of helically grooved heat pipes,

and examined the similarity of the heat pipe to the
non-isothermal constrained vapor bubble.
Analytical modeling is applied to: the startup

characteristics of asymmetrical ¯at-plate and disk-
shaped heat pipes; a network thermodynamic analysis
of the transient behavior of device; the study of
inclined, open thermosyphons; the simulation of a

parabolic solar collector heat-pipe heat exchanger reac-
tor for the dehydrogenation of cyclohexanes; and cor-
relation for mixed convection heat transfer and

pressure drop in tube-in-shell thermosyphon exchan-
gers [163Q±178Q].

18.12. Miscellaneous

In the area of food science, spatial non-uniformity

in microwave reheating is characterized, the electrocon-
ductive heating in solid- liquid mixtures investigated,
and two continuous precrytallization process of choc-

olate compared. Other papers consider the role of inte-
grated thin-®lm heaters in thermal crosstalk of laser
arrays, compared DOE-2 predicted building energy

¯ows with measurements on full scale structures and
determined recombination and accommodation coe�-
cients for oxygen atoms, important in calculating the
energy release by spacecraft thermal protection during

the atmospheric entry phase [179Q±184Q].

19. Heat transfer applications Ð general

The large number of papers in the subsections on
meteorology and chemical processing of this section

make a selection necessary. Papers are included, the
emphasis of which is on the characteristics of the ther-
mal energy transport processes.

19.1. Aerospace

The reentry aerodynamics are examined [7S] within
wide ranges of angle of attack and ¯ight attitudes by a
Monte Carlo method. Three thermal protective systems

(tile, blanket, metallic) are analyzed [12S] for reusable
launch vehicles. A method is developed to study [11S]
the ground e�ect on a delta clipper. Aeroassisted orbi-

tal transfer is optimized numerically [13S]. The per-
formance of a folding heatshield reentry vehicle is
investigated [9S]. Embedded cooling channels in the
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skin of an aircraft structure are investigated [4S]. The
causes of unstart for ram accelerators are explained

[6S]. Study projects assess [10S] an advanced heat
shield concept. Experiments evaluate [1S] the perform-
ance of supersonic exhaust di�users. The thermal prop-

erties of honeycomb core sandwich structures are
analyzed [3S]. Brightness calculations for visible emis-
sions from nitric oxide (the spacecraft glow) are pre-

sented [8S] for altitudes between 140 and 180 km. Fuel
regression characteristics are measured [2S] in a radial
¯ow hybrid rocket. A model describes [5S] the ¯uid

drop behavior in a cluster of surrounding drops at
rocket chamber pressure.

19.2. Bioheat transfer

A large number of papers were devoted to heating

of various tissues. Thermal wave propagation [21S],
laser radiation [26S] are considered. A generic convec-
tive equation describes energy balance in tissue [25S].
A two-compartment model estimates the temperature

during general anesthesia [17S]. Thermal damage in
cutaneous contact burns is predicted [24S] as in the
shrinkage of collagenous tissue [16S]. Thermal models

for transient temperature analysis are evaluated by
comparison with experiments [19S]. Heat transfer in
heat surgery is modeled [28S]. Heat and vapor trans-

fer is computed [23S] in the human nasal cavity. Tis-
sue temperatures during the removal of subcutaneous
fat are determined [14S]. Heat Transfer during laser
cutting of brain tissue is analyzed [31S]. Thermo

regulation in the prostate during hermotherapy found
attention [30S, 32S]. Water and aircooling are dis-
cussed [22S, 18S] in hyperthermia. A heat transfer

model [27S] predicts safe touch temperatures of
plates. Heat and moisture transfer is simulated in
human clothing [20S]. The wind chill factor under

predicts the chill temperature [15S]. A ¯exible algor-
ithm constructs 3D arterial and venous networks
[29S].

19.3. Electronics

Thermal characteristics of power-sensor Microsys-
tems are studied [33S] by simulation and experiments.
A transient thermal management strategy enables cro-
blems in thermal simulation [34S]. An e�cient thermal

simulation is discussed [35S]. An experimental study
deals with heat transfer enhancement in electronic
modules varying secondary air injection hole arrange-

ments [36S]. Hot spots by current crowding can be pre-
dicted [39S] in power transistors. Cooling
characteristics of formed convection of ¯at form elec-

tronic components are studied [37S] in channel ¯ow
introducing adiabatic heat transfer coe�cients. A ®nite
element analysis studies the e�ect of moist air ¯ow on

the temperature prediction of a ®nite domain with
source arrays [38S].

19.4. Piston engines

Heat transfer processes in the combustion chamber
of direct-injection diesel engines are reviewed based on

experiments in an atmospheric test rig [40S]. A ®nite
element analysis studies heat transfer in diesel engines
[44S]. A study assesses the e�ect of the overall heat

transfer coe�cient on optimal distribution of the heat
transfer surface in a Sterling engine [43S]. Optimum
cylinder cooling for advanced diesel engines is studied

[45S] numerically and by experiments. Instantaneous
unsteady heat transfer is calculated [41S] for a rapid
compression engine. The optimal motion of a piston
®tted in a cylinder in a cooling bath maximizes the

expansion work [42S].

19.5. Gas turbines

E�ect of squealer tips on rotor heat transfer and e�-

ciency was calculated [46S]. A procedure for optimiz-
ation of turbine blades is based on maximum blade
temperature and on tangential force coe�cient [48S].

Endwall heat transfer measurements were measured in
a transonic cascade [47S].

19.6. Steam power plants

Heat transfer and combustion are simulated [50S] in
a large tangentially ®red utility boiler at the furnace
exit. Deposition and corrosion measurements in a 10
MW straw ®red boiler detected enhanced corrosion on

heat transfer surfaces [49S].

19.7. Atomic reactor engineering

Recent advances in sensitivity analysis of nuclear

reactors using perturbation methods are described
[57S]. The Canadian algorithm [53S] covers postulated
upset conditions in CANDU reactors. Experiments

study [55S] core thermohydraulics under natural circu-
lation conditions. The fuel pin temperature can be
modeled using water [63S] and can be calculated [64S]
by water reactor dynamics.

Post test calculations of noko experiments are
described [60S] in the European research program. A
linearized model is derived for the safe integral reactor

[56S]. Analysis was performed for ®ve accident
sequences [52S]. Failure mode and e�ect analysis of
the heat transfer system of a thermonuclear reactor

was performed [58S]. Passive safety injection exper-
iments are analyzed [62S] for advanced light water
reactor and for a new AP 600 reactor [51S]. A code
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for best estimate of large break LOCA analysis was
extended to an upper plenum injection plant [61S].

An experiment [54S] studies an ingress-of-coolant
accident in fusion reactors. The fusion breeder with
enhanced safeguarding capabilities against nuclear

weapon proliferation is analyzed [59S].

19.8. Climatising

A computer code describes [68S] the performance of

metal hydride heating/air-conditioning systems. A
mathematical model characterizes the cooling of an
evaporative cooler coupled to a room [72S]. Space

cooling using metal ceiling panels is analyzed exper-
imentally and analytically [66S]. Laminar air ¯ow with
low water-vapor concentration is cooled at tempera-
tures well below 08C to remove the humidity. This is

studied experimentally and computationally [70S]. The
in®ltration load of air into a cold room through its
doorways is modeled [69S]. A comparison of simulated

and measured data is presented for three-dimensional
earth contact of a buried structure [65S].
It is studied parametrically whether liquid desiccant

can be used e�ectively to reduce energy consumed in
air conditioning [71S]. Absorption chillers are generally
considered ine�cient. An entropy generation analysis

study shows that the largest rate of entropy generation
occurs in the beds of a silica gel±water chiller during
the switching phase [67S].

19.9. Thermomechanical

A method is described by which the time can be cal-
culated [76S] which is required for a steel structure to
sustain the e�ects of a temperature rise prescribed by

real ®re curves. The concept of generalized modeling
and control of thermal deformation of machine tool
structures is described [73S] and studied [74S] using

generalized transfer functions. The yield limits of plates
at heat ¯uxes of order 10 MW/m2 are predicted by a
calculation of the elastic stresses [75S].

19.10. Meteorology

A model for weather prediction represents the e�ects
of hills on temperature and moisture in the atmos-
pheric boundary layer [79S]. A heat and water model

simulates [77S] the surface energy ¯uxes and surface
temperatures in soil vegetation atmosphere transfer
and studies [81S] the e�ect of soil thermal conductivity.

An ice±ocean model is developed and applied to the
Hudson bay [83S]. Spaceborne thermal emission and
re¯ection radiometer measurements are used to esti-

mate energy ¯uxes from the land surface [84S]. Ther-
mal boundary layer and stagnant lid convection
analyses with non-Newtonian viscosity are used to cal-

culate [82S] mantle convection on Mars and Venus.
Studies on the thermal evolution of permafrost predict

[86S] the retreat of alpine glaciers. The German conti-
nental deep-drilling program was used to study heat
transfer processes in the deep continental crust [80S].

Detailed thermoalkaline water pathways were calcu-
lated [87S] and found consistent with observations in
the Mediterranean sea. A new method computed [78S]

surface transfer coe�cients based on state-of-the-art
empirical ¯ux pro®le measurements. A biosphere
model is coupled to a global dynamic model to study

the climatic impact of land surface operations [85S].

19.11. Manufacturing

Mathematical modeling is applied more and more to
manufacturing processes whereas the number of exper-

imental studies remains relatively small.
Many aspects of tribology of hot metal forming

need clari®cation [89S]. Cooling systems, cooling rates,
transient mold temperatures, and simulation of the ®ll-

ing stage are discussed [105S, 106S, 94S, 93S]. Heat
transfer in forging [95S, 96S] is simulated, heat release,
temperature, velocity are modeled in smelting [102S,

103S]. Thermal transport in optical ®ber drawing is
clari®ed [108S, 91S, 92S]. Continuous sheet casting and
strip casting are modeled [101S, 90S]. Friction welding

[100S] arc welding [107S], and hot plate welding [99S]
are objects of investigation. Publications deal with cold
and hot rolling [98S, 104S]. Experiments clarify heat
transfer and life of metal cutting tools [88S] and of the

peel and powder in grinding [97S].

19.12. Chemical processing

Synthesis of a heat exchanger network develops a
systematic procedure to ®nd an optimal network and

heat transfer areas to meet target temperatures at mini-
mum cost [122S]. Unsteady calculations are capable to
predict [121S] the detailed deposition pro®le even in

the inlet region of a chemical vapor deposition process.
An investigation of membrane distillation with a lami-
nar ¯ow of the streams in a module has been per-

formed [115S]. An analysis studies [114S] the problem
of heat generation in a ¯uid ¯owing through a pipe of
®nite length and the development of thermal runaway.
Inverse and predictive control systems are applied

[113S] to the real-time control of the heat transfer ¯uid
temperature in a pilot chemical reactor. The e�ect of
surfactant monolayers on heat transfer through air/

water interfaces is studied by observing changes in the
surface temperature [112S]. Impulse drying was simu-
lated [118S] with a platen press equipped with a heated

pressing head. A two-dimensional model was devel-
oped [119S] for the reacting gas ¯ow, heat transfer and
electro dynamics in the discharge reactor for diamond

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366 293



®lm deposition. The non-linear equations based on
moments of the aerosol size distribution function are

solved asymptotically for aerosol reactors [124S]. The
fundamental heat transfer processes in multi-zone
batch furnaces are analyzed [111S]. The numerical sol-

ution of current and temperature distribution in a
solid oxide fuel cell can be simpli®ed signi®cantly by
analogy with modeling of radiative heat transfer in

packed bed reactors [117S]. The deposition of thin
solid ®lms in CVD processes is determined by hydro-
dynamics, chemical kinetics, and transport phenomena

and modeled [123S] to study the in¯uence of an electric
®eld. Heat transfer and deposition rate in an CVD
process are modeled [116S] as a buoyant jet ¯ow
impinging on a circular cylinder. The analysis of heat

transfer during sterilization and cooling of a cylindrical
canned product is presented [110S]. The application of
transfer functions in foods for heat and mass transfer

problems was the subject of several studies over the
last decade [120S]. A model for the prediction of tem-
perature pro®les in a microwaved dough was devel-

oped [125S]. A ®nite element method to solve the
unsteady heat transfer equations describing the heating
of turkeys in a conventional electric oven was devel-

oped [109S].

20. Solar energy

Papers are broadly divided into low-temperature
solar applications, high-temperature solar applications,
and energy use in buildings. Papers on solar energy or

energy conservation that do not primarily focus on
heat transfer, for example, papers on photovoltaics,
wind energy, architectural aspects of building design
and control of thermal systems, are excluded.

Low temperature solar applications include domestic
water heating, space heating and cooling, desalination
of water, and solar ponds. Within this category, papers

on non-concentrating solar thermal collectors and ther-
mal storage are discussed.
High temperature solar thermal applications require

use of concentrated solar energy. Uses include elec-
tricity generation, thermochemical reactions and indus-
trial process heat. Papers address processes as well as
system components such as heliostats, concentrators,

and receivers/reactors.
The section on energy use in buildings includes

papers on characterization of energy use and heat

transfer in building components.

20.1. Low temperature applications

20.1.1. Flat-plate and low-concentrating collectors
Conventional ¯at-plate liquid solar collectors are a

mature technology. The only paper that adresses heat

transfer in a traditional geometry is an experimental
study of wind-induced losses. Convective heat transfer

coe�cients from a heated surface mounted onto a roof
were in good agreement with previously published cor-
relations [7T].

Studies of air collectors include numerical analysis
of the use of porous substrates [1T], optimization of
the shape of triangular absorbers [4T], and a model

of transient heat transfer in a rectangular vertical
channel [5T]. A relatively new concept for solar air
heating is to preheat ventilation air by cooling

photovoltaic modules on ventilated facades and roofs
[6T].
Two studies address heat pipe solar collectors. Ex-

perimental analysis of a heat pipe solar collector that

uses R11 shows the e�ects of tilt angle, and design of
the condenser and wick on thermal performance [2T].
[3T] compares outdoor performance of a heat pipe

collector with methanol to a conventional liquid col-
lector.
Collectors that combine collection and water storage

are discussed in Section 20.1.2 [10T].

20.1.2. Water heating

Papers in this category deal exclusively with dom-
estic water heating, speci®cally use of photovoltaic
pumps, design of collectors with integrated storage,

thermal strati®cation and ¯uid mixing in water sto-
rage tanks, and heat exchanger performance. [8T]
provides a practical method for selection of the com-
ponents of a photovoltaic pumping system (motor,

PV cells and pump) to optimize system performance.
A nomogram based on dimensionless parameters is
developed for predicting performance of integrated

collector storage (ICS) systems [10T]. Thermal beha-
vior and ¯uid dynamics of water storage tanks are
examined in [9T], [11T] and [12T]. [9T] considers the

e�ect on entrainment and di�usion of location of the
inlet and outlet ports. The numerical study of Hahne
and Chen [11T] characterizes thermal strati®cation

with Richardson and Peclet numbers. A three-dimen-
sional model of a vertical mantle tank/heat exchanger
is validated and used to develop a Nusselt±Rayleigh
correlation for natural convection heat transfer. [13T]

presents experimental data for a load-side heat
exchanger used with an unpressurized drain-back sys-
tem.

20.1.3. Space heating
Most work on solar air heating addresses design of

the collector. Those papers are discussed in Section
20.1.1 [1T, 4T, 5T]).
A model of a solar driven heat pump is presented by

Wu et al. [15T]. Inalli [14T] models a community solar
heating system with a large underground storage tank.
Emphasis is on ground temperature distribution.
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20.1.4. Space cooling
Data on enhancement of heat transfer and more

e�ective absorption/desorption using a zeolite-active
carbon is presented by Loiu et al. [18T]. Performance
of an ammonia±water storage combined with a heat

pump that uses the ammonia mixture as the refrigerant
is compared to an eutectic salt storage system [21T]. A
comparison of double- and single-glazed lithium-chlor-

ide solar systems operating in Taiwan is presented
along with heat and mass transfer correlations useful
for design [23T].

Papers that address cooling applications in buildings
include a control strategy to minimize operating cost
and energy use of ice storage systems [17T], modeling
of heat transfer through a spray cooled roof [16T], and

simulation of an attic radiant barrier [20T]. A transient
heat and mass transfer model of radiant barrier retro-
®ts indicates that emissivity is the most signi®cant par-

ameter [19T].
[22T] presents a model of solar desiccant cooling for

aeration of stored grains.

20.1.5. Storage
This section includes papers that speci®cally address

storage. Papers that address the use of storage as part
of domestic water heating [9T, 11T, 12T] or space
cooling systems [17T, 21T] are discussed in the sections

on those applications.
[25T] gives an economic analysis of sensible heat

storage. [24T] presents a generalized model to deter-
mine the optimum phase change temperature for

latent storage. [26T] considers the e�ect of geometry
on the transient behavior of phase change material.
In one geometry, the material is packed in cylinders

and the heat transfer ¯uid ¯ows parallel to the
cylinders. In the second geometry, pipes containing
the heat transfer ¯uid are embedded in the storage

material. Optimal geometric design is discussed in
terms of material, ¯ow rates and temperatures.
Measurement of heat extraction from ammonium

alum and ammonium nitrate encapsulated in poly-
ethylene balls packed in a cylindrical bed through
which air passes indicate that the Stanton number
is increased by 74% for sensible heat extraction

[28T].
Storage in buildings is the subject of [27T, 29T,

30T]. The e�ect of thermal storage walls (Trombe

walls) on air temperature and movement are studied
numerically by Gan and Khalifa [27T, 29T]. [30T]
models heat transfer of air ¯ow through a hollow core

concrete slab.

20.1.6. Desalination

Studies of conventional single basin solar stills
model the e�ect of the slope of the cover [31T]
and measure the overall heat transfer coe�cient

between water and glazing [34T]. Two groups con-
sidered preheating of the saline feed water. [32T]

circulated air in a closed-humidi®cation±condensation
cycle. Productivity of the still was improved at low
air temperatures [32T]. Mink and Karmazsin [33T]

were able to achieve a three-fold increase in yield in
an air blown still with heat recycling.

20.1.7. Solar ponds
In their presentation of a model of heat and mass

transfer in a shallow pond for green house aquacul-

ture, [36T] provides insight on the use of polyethylene
and polyvinyl chloride glazing as opposed to low emis-
sivity glass. [35T] models the e�ect of load on the
thickness of the non-convective zone in a traditional

pond.

20.2. High temperature applications

Papers address design of the concentrating system,

including heliostats, parabolic troughs and solar
towers, receiver/reactors for thermochemical processes,
and heat engines. [37T] discuss the upper bound for
the e�ciency of converting solar energy into work.

Yogev et al. [46T] provide an overview of high tem-
perature solar systems and give a promising economic
analysis. [38T] models the e�ciency of a solar Stirling

engine system. Kribus et al. [42T] derive upper limits
on the performance of an axis-symmetric heliostat
®eld, a solar tower, secondary optics and black recei-

ver. The tower-top cone provides the best concen-
tration and e�ciency. The suitability of di�erent
design options is presented. Odeh et al. [43T] model

direct stream generation in parabolic trough collectors.
They compare current technology that uses synthetic
oil in the collectors to use of water. Tchinda et al.
[45T] model transfer heat in the CPC collector. Con-

struction and behavior of vacuum glazing is reviewed
in [39T]. Emphasis is on vacuum stability and mechan-
ical strength.

Thermochemical reactions and reactor/receivers are
the topics of three papers. Ries et al. [44T] model a
decomposition reaction of a solid particle into solid

plus gas in an open receiver. They derive the criteria
for reaction stability and give the limits of stable op-
eration. For many applications, a transparent win-
dow is required. Design of the `window' is a

challenge because of the high temperature and press-
ure usually demanded. Karni et al. [40T] present a
frustrum-like design made of fused silica. Optical,

mechanical and thermal analysis as well as exper-
imental data indicate satisfactory performance at 30
bar and 17008C. Extended evaluation of the novel

`Porcupine' absorber in the solar furnace at the
Weizmann Institute provide evidence of its endurance
at high ¯ux [41T].
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20.2.1. Buildings

Papers in this area are subdivided into modeling of
energy use and HVAC systems, measurement and in-
terpretation of energy data, and development and

characterization of building components.
Modeling of hourly energy requirements and HVAC

systems is the subject of [49T, 52T, 56T, 58T, 62T].
[49T] addresses building heat storage in an urban en-
vironment where adjacent buildings, street level use

and enclosed air volume a�ect heat ¯uxes. Numerical
experiments examine the importance of various par-
ameters. Multiple linear regression is used to predict

hourly energy consumption in commercial buildings
[58T]. Accuracy of multiple and linear regression

models of cooling energy use for two commercial
buildings are compared. The same group from Texas
A&M University model hourly energy use with Fourier

series functional forms [52T]. [56T] discusses pro-
cedures for calibrating building energy simulation
models like DOE2. A calibrated model is used to opti-

mize HVAC operation in 18 buildings with a potential
savings of two million dollars annually [62T]. Re-

gression analysis [59T, 65T] and neural network [60T]
models of energy saving are presented. [50T] uses DOE
2 to categorize the construction characteristics of the

building envelope to the cooling load in sub-tropical
climates.
Measurement techniques and data interpretation are

discussed in [47T, 51T, 53T±55T]. A review of the
methods used to analyze measured energy use in com-

mercial buildings is given by Claridge [51T]. Develop-
ment of graphical indices for displaying data are
reviewed and illustrated in two papers [54T, 55T]. An

algorithm to disaggregate hourly electrical load into
hourly load pro®les for air conditioning, lighting fans
and pumps is presented and applied to data for

Department of Defense facilities [47T]. A method for
detecting and evaluating thermal ¯aws in buildings

uses transient thermographic measurements of tem-
perature [53T].
Analysis of heat transfer in building components is

the subject of papers on window glazing [48T, 63T,
57T], and slab ¯oors [61T, 64T]. Work on radiant bar-

riers is discussed in the section on solar cooling see
[19T]. [48T] uses a transient one- dimensional analysis
to evaluate conductive, convective and radiative heat

transfer in laminated glazing with chemically deposited
solar control coating. CFD models and ¯ow visualiza-
tion of di�usion, convection and radiation is double

pane windows with a screen and a semi-open cavity
for thermal siphon are used to develop a Nusselt num-

ber correlation [63T]. Ismail et al. [57T] present a two-
dimensional model of a double pane window ®lled
with phase change material. Krarti and Piot [61T] pre-

sent a steady-periodic solution of conduction under a
slab ¯oor adjacent to another slab. Insulation for

¯oors made of a polyethylene pacing waste is investi-
gated by Megari et al. [64T].

21. Plasma heat transfer and magnetohydrodynamics

21.1. Plasma ¯uid ¯ow characterization

Several new models have been presented describing
speci®c aspects of plasma nozzle ¯ows. Capitelli et al.

[1U] have determined the electron energy distribution
function for expanding nitrogen arcs based on sol-
utions of the Boltzmann equation and have found a
strong e�ect of excited state densities. A two-dimen-

sional, two-temperature viscous ¯ow model of a super-
sonic hydrazine arcjet has demonstrated the thermal
and chemical non-equilibrium in such a plasma and

the e�ect of ionization and excitation on the anode
attachment location [9U]. A similar con®guration has
been modeled by Jodoin et al. [7U] including the non-

equilibrium cathode sheath. A model of a subsonic dc
plasma torch using the PHOENICS code with the k±
epsilon turbulence description, but assuming thermal
and chemical equilibrium, has provided temperature

and velocity pro®les for an argon Ð hydrogen plasma
¯ow and shows the e�ects of entrainment of an ambi-
ent gas [4U]. A new theoretical approach for the

description of ¯ows of ¯uids which are in far-non-equi-
librium has been presented by Itoh and Itoh [6U], with
special treatment of the non-linear turbulence e�ects.

The ¯uid dynamics and heat transfer in an argon±
hydrogen radio frequency induction plasma torch have
been modeled by Chen et al. [2U] incorporating a com-

bined-di�usion-coe�cient approach, and the e�ects of
a central injection probe and of varying central ¯ow
rates are described. Another model of a similar r®
plasma reactor has concentrated on determining the

mixing patterns between the central helium or nitrogen
¯ow and the hydrogen sheath gas, and the results are
compared with those from enthalpy probe measure-

ments [3U]. A report of an experimental study of the
plasma ¯ow generated by a magnetoplasmadynamic
generator in a reentry simulation describes the results

of electrostatic probe measurements [5U]. Electron
density and temperature distributions have been de-
rived and plasma velocities have been determined from
the time of ¯ight measurements of natural pertur-

bations in the plasma. In another experimental study,
the production of atomic nitrogen in a rectangular
microwave plasma generator has been investigated

using emission spectroscopy, and it has been found
that 3.3% of the absorbed power is transformed into
dissociation energy [11U]. An accurate model predic-

tion of the characteristics of a low pressure parallel
plate plasma reactor operating with nitrogen is pre-
sented by Longo et al. [8U], and it has been shown

R.J. Goldstein et al. / Int. J. Heat Mass Transfer 44 (2001) 253±366296



that a self-consistent treatment of the plasma dynamics
together with the non-equilibrium molecular kinetics is

necessary. Menart and Lin [10U] present a model of a
free-burning argon arc including the cathode, and they
point out the e�ect of the selection of a length scale in

the radiation treatment using net emission coe�cients.

21.2. Plasma±solid interaction

The arc±cathode interaction is modeled in two
papers. One of them describes the supersonic hydrazine

arcjet con®guration [16U] with two di�erent
approaches, and with the results from an arcjet model
[9U] as an input and the results giving sheath voltage

and electron temperature and density distributions.
The second model attempts to explain the observed
di�erent attachment modes on thermionic cathodes

(di�use or ®lamentary) with a non-uniqueness of the
solutions of a multidimensional thermal balance with
non-linear external energy ¯uxes [13U]. An experimen-
tal investigation of the arc cathode interaction is

reported by Zhou and Heberlein [19U] including tem-
perature and electron density data in front of the cath-
ode and cathode surface temperatures for di�erent

operating conditions. A numerical anode heat transfer
analysis presented by Amakawa et al. [12U] describes
the abrupt change in ¯uid ¯ow and heat transfer

characteristics between an arc and the anode when the
¯ow velocity in the direction of the anode surface, i.e.
the boundary layer thickness is altered. Two further
papers describe the heat transfer from a plasma ¯ow

to a spherical particle [14U, 18U] as function of
plasma and particle parameters. The heat transfer
from a low pressure (1 torr) rf plasma to a surface in a

plasma CVD reactor has been modeled [15U], and the
resulting temperature pro®les have been compared
with those obtained from CARS measurements. The

results allowed the determination of thermal accommo-
dation coe�cients for di�erent gas/surface combi-
nations and for di�erent pressures. The e�ect of an

ultrafast laser pulse on the crystal structure of a GaAs
crystal has been investigated in [17U], and the results
have been explained by heat transfer from a plasma
®lling the laser induced crater.

21.3. Plasma applications

Experimental results from a high power electric dis-
charge launcher have been used to derive plasma tem-
peratures (23±35 kK), and gas heating e�ciencies have

been found to increase with the initial gas pressure
reaching 90% for starting pressures of 40 MPa [24U].
Elnaas et al. [20U] have investigated the plasma syn-

thesis of calcium carbide in a spouted-¯uidized bed
reactor operated with argon and hydrogen, and have
concluded that this plasma process o�ers a more e�-

cient alternative for calcium carbide production. An
interactive ¯ow visualization program has been devel-

oped for plasma spraying applications, based on sol-
utions from the LAVA code, and it has been used for
showing transient e�ects on temperature and pressure

distributions and particle ¯ows [22U]. Measurements
on an aluminum welding process have shown arc heat-
ing e�ciencies of 48±66%, increasing with voltage and

decreasing with increasing current, and the di�erent
heat transfer mechanisms from the arc to the work-
piece have been critically examined [21U]. An analysis

of the e�ect of pulsing on the droplet transfer rate in
arc welding with a consumable electrode is presented
by Nemchinsky [23U] showing that a high pulse fre-
quency leads to a lower thermal load on the weld and

lower metal fume formation.

21.4. Magnetohydrodynamics

Several models deal with special boundary con-

ditions for MHD ¯ows. The three-dimensional ¯ow
and heat transfer characteristics of the MHD ¯ow at a
transpiration cooled stagnation point are modeled
using a similarity solution for the boundary layer

[27U]. Another model describes the e�ect of suction
and blowing on the ¯ow and heat transfer of a MHD
¯ow over a vertical stretching surface [28U]. The e�ect

of blowing rate and magnetic ®elds on the boundary
layer for an MHD ¯ow over a wedge is presented by
Kumari [32U] using an implicit ®nite di�erence

scheme. In another calculation of unsteady ¯ow, the
e�ect of surface temperature oscillations on the heat
transfer to or from a free convection MHD ¯ow along

a vertical plate has been determined using a linearized
theory [30U]. A new modeling approach for supersonic
MHD channel ¯ow is presented by Harada et al. [29U]
using a fourth order modi®ed Runge±Kutta scheme

augmented with total variation diminishing models.
The e�ect of magnetic ®elds on the stability of liquid

metal ¯ows across a cylinder has been investigated by

Mutschke et al. [33U], and it has been found that
strong ®elds can stabilize 2D ¯ow and suppress vortex
shedding. A similar con®guration has been investigated

theoretically and experimentally by the same group
[38U] using an electrolyte solution ¯ow across a cylin-
der. Flow visualization and modeling results have been
used to demonstrate the e�ects of the electromagnetic

forces. The pressure drop and heat transfer from a
gas±liquid metal two phase ¯ow in a rectangular chan-
nel have been calculated using an annular con®gur-

ation model, and the results have shown that lower
pressure drops and increased heat transfer can be
expected compared to single phase liquid metal ¯ow

[31U]. The pressure drop and heat transfer character-
istics for liquid lithium ¯ow and helium±liquid lithium
two phase ¯ow have been experimentally determined
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for rectangular and circular channels by Takahashi et
al. [36U, 37U], and the changed convection heat trans-

fer due to changed ¯ow patterns is described.
A numerical model for the ¯ow and heat transfer

characteristics of a non-Newtonian ¯ow in an eccentric

annulus is presented by Ahmed and Attia [26U]. In
two papers the e�ect of radiation in MHD ¯ows is
presented. Raptis and Massalas [34U] use the Rosse-

land approximation to describe the radiative ¯ux from
a gray medium, while Abbey and Mbelegu [25U]
assume an optically thin medium but consider slip ¯ow

conditions caused by high temperatures rather than
low pressures.
The e�ect of gas pressure on the e�ciency of a

MHD accelerator has been studied experimentally by

Sherbakov [35U] using supersonic air ¯ow seeded with
KNa eutectic, and ¯ow characteristics have been found
to be insensitive to the pressure increase. The e�ect of

an axial magnetic ®eld on the heat transfer in a potass-
ium vapor heat pipe has been investigated by Zarkova
and Guerassimov [39U], and it has been found that

the measured heat ¯ux decreases as a result of the
magnetic ®eld.
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